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CUBIC DOUBLE CENTRALIZERS AND CUBIC

MULTIPLIERS

Keun Young Lee and Jung Rye Lee∗

Abstract. In this paper, we establish the stability of cubic double
centralizers and cubic multipliers on Banach algebras. We also prove
the superstability of cubic double centralizers on Banach algebras
which are cubic commutative and cubic without order.

1. Introduction

Let A be a complex Banach algebra. Recall that Al(A) := {a ∈ A :
aA = {0}} is the left annihilator ideal and Ar(A) := {a ∈ A : Aa = {0}}
is the right annihilator ideal on A. A Banach algebra A is said to be
strongly without order if Ar(A) = Al(A) = {0}. We say that a Banach
algebra A is cubic without order if {r ∈ A : {ra3; a ∈ A} = {0}} =
{0} = {r ∈ A : {a3r; a ∈ A} = {0}}. It is easy to see that if A is cubic
without order then A is strongly without order.

A linear mapping L : A → A is said to be left centralizer on A if
L(ab) = L(a)b for all a, b ∈ A. Similarly, a linear mapping R : A → A
that R(ab) = aR(b) for all a, b ∈ A is called right centralizer on A. A
double centralizer on A is a pair (L,R), where L is a left centralizer, R
is a right centralizer and aL(b) = R(a)b for all a, b ∈ A. For example,
(Lc, Rc) is a double centralizer, where Lc(a) := ca and Rc(a) := ac.
The set D(A) of all double centralizers equipped with the multiplication
(L1, R1) · (L2, R2) = (L1L2, R1R2) is an algebra. The notion of double
centralizer was introduced by Hochschild [7] and by Johnson [10].

An operator T : A → A is said to be a multiplier if aT (b) = T (a)b for
all a, b ∈ A.
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A Banach algebra A is said to be cubic commutative if (ab)3 = a3b3

for all a, b ∈ A. We can show that there is a Banach algebra cubic
commutative that is not commutative (see Example 2.4 of the present
paper).

The functional equation is called stable if any function satisfying that
functional equation “approximately” is near to a true solution of func-
tional equation. We say that a functional equation is superstable if every
approximate solution is an exact solution of it (see [2]).

In 1940, Ulam [16] proposed the following question concerning sta-
bility of group homomorphisms: under what condition does there is an
additive mapping near an approximately additive mapping? Hyers [8]
answered the problem of Ulam for the case where G1 and G2 are Banach
spaces. A generalized version of the theorem of Hyers for approximately
linear mapping was given by Th. M. Rassias [15]. Since then, the
stability problems of various functional equation have been extensively
investigated by a number of authors (for instances, [1, 4, 5, 12, 13, 14]).
In particular, one of the important functional equations is the following
functional equations

f(x + y) + f(x− y) = 2f(x) + 2f(y),(1.1)

which is called a quadratic functional equation. The function f(x) =
bx2 is a solution of this functional equation. Every solution of functional
equation (1.1) is said to be a quadratic mapping.

In [11], Jun and Kim considered the following cubic functional equa-
tion

f(2x + y) + f(2x− y) = 2f(x + y) + 2f(x− y) + 12f(x).(1.2)

It is easy to show that the function f(x) = x3 satisfies the functional
equation (1.2), which is called a cubic functional equation and every
solution of the cubic functional equation is said to be a cubic mapping.

Moslehian, Rahbarnia and Sahoo [14] established the stability of dou-
ble centralizers to Cauchy functional equations in the framework of Ba-
nach algebras. They also proved the superstability of double centralizers
on Banach algebras which are strongly without order as follows.

Theorem 1.1. Let A be a strongly without order Banach algebra
and let L, R : A → A be mappings for which there exist a positive real
number r and a function ψ : A× A → [0,∞) satisfying either

lim
n→∞

r−nψ(rna, b) = lim
n→∞

r−nψ(a, rnb) = 0 (a, b ∈ A)
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or

lim
n→∞

rnψ(r−na, b) = lim
n→∞

rnψ(a, r−nb) = 0 (a, b ∈ A)

such that

‖aL(b)−R(a)b‖ ≤ ψ(a, b)

for all a, b ∈ A. Then (L,R) is a double centralizer on A.

Recently, Gordji, Ebadian, Ramezani and Park [6] introduced the
quadratic double centralizers, and they established the stability as fol-
lows.

Theorem 1.2. Let A be a Banach algebra. Suppose that s ∈ {−1, 1}
and that f : A → A is a mapping with f(0) = 0 for which there exist
a mapping g : A → A with g(0) = 0 and functions φj, ψi : A × A →
[0,∞) (1 ≤ j ≤ 2, 1 ≤ i ≤ 3) such that

φ̃j(a, b) :=
∞∑

k=0

φj(2
ska, 2skb)

4sk
< ∞ (1 ≤ j ≤ 2),

lim
n→∞

ψi(2
sna, b)

4sn
= 0 = lim

n→∞
ψi(a, 2snb)

4sn
(1 ≤ i ≤ 3),

‖f(λa + λb) + f(λa− λb)− 2λ2f(a)− 2λ2f(b)‖ ≤ φ1(a, b)

‖g(λa + λb) + g(λa− λb)− 2λ2g(a)− 2λ2g(b)‖ ≤ φ2(a, b)

‖f(ab)− f(a)b2‖ ≤ ψ1(a, b)

‖g(ab)− a2g(b)‖ ≤ ψ2(a, b)

‖a2f(b)− g(a)b2‖ ≤ ψ3(a, b)

for all a, b ∈ A and all λ ∈ T = {λ ∈ C : |λ| = 1}. Also, if for
each fixed a ∈ A the mappings t → f(ta) and t → g(ta) from R to A
are continuous, then there exists a unique quadratic double centralizer
(L,R) on A satisfying

‖f(a)− L(a)‖ ≤ 1

4
φ̃1(a, a),

‖g(a)−R(a)‖ ≤ 1

4
φ̃2(a, a)

for all a ∈ A.
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In this paper, we introduce the cubic double centralizers and cubic
multipliers on Banach algebras, and we establish the stability of both of
them. We also prove the superstability of cubic double centralizers on
Banach algebras which are cubic without order and cubic commutative.

2. Stability of cubic double centralizers

In this section, let A be a complex Banach algebra. We establish the
stability of cubic double centralizers.

Definition 2.1. A mapping L : A → A is a cubic left centralizer if
L satisfies the following properties:
1) L is a cubic mapping,
2) L is cubic homogeneous, that is, L(λa) = λ3L(a) for all a ∈ A and
λ ∈ C,
3) L(ab) = L(a)b3 for all a, b ∈ A.

Definition 2.2. A mapping R : A → A is a cubic right centralizer
if R satisfies the following properties:
1) R is a cubic mapping,
2) R is cubic homogeneous,
3) R(ab) = a3R(b) for all a, b ∈ A.

Definition 2.3. A cubic double centralizer of an algebra A is a pair
(L,R), where L is a cubic left centralizer, R is a cubic right centralizer
and a3L(b) = R(a)b3 for all a, b ∈ A.

The following example introduces a cubic double centralizer.

Example 2.4. Let (A, ‖.‖) be a Banach algebra. Let T = A×A×A×
A. We define |‖a‖| = ‖a1‖+‖a2‖+‖a3‖+‖a4‖ for all a = (a1, a2, a3, a4)
in B. It is not hard to see that (B, |‖.‖|)) is a Banach space. For arbi-
trarily elements a = (a1, a2, a3, a4) and b = (b1, b2, b3, b4) in B, we define
ab = (0, a1b4, a2b3, 0). Since A is a Banach algebra, we conclude that
B is a Banach algebra. It is easy to see that B4 = {abcd : a, b, c, d ∈
B} = {0}. But B3 = {abc : a, b, c ∈ B} is not zero. Now we consider
the mapping T : A → A defined by

T (a) = a3 (a ∈ A).
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Then T is a cubic mapping and cubic homogeneous. Since B4 = {0},
we get

T (ab) = (ab)3 = 0 = a3b3 = T (a)b3 = a3T (b)

and
a3T (b) = a3b3 = 0 = T (a)b3

for all a, b ∈ B. Hence (T, T ) is a cubic double centralizer of B.

In the above example, B is a cubic commutative algebra, but it is not
commutative.

Theorem 2.5. Suppose that s ∈ {−1, 1} and that f : A → A is a
mapping with f(0) = 0 for which there exist a mapping g : A → A with
g(0) = 0 and functions φj, ψi : A × A → [0,∞) (1 ≤ j ≤ 2, 1 ≤ i ≤ 3)
such that

φ̃j(a, b) :=
∞∑

k=0

φj(2
ska, 2skb)

8sk
< ∞ (1 ≤ j ≤ 2),(2.1)

lim
n→∞

ψi(2
sna, b)

8sn
= 0 = lim

n→∞
ψi(a, 2snb)

8sn
(1 ≤ i ≤ 3),

‖f(2λa + λb) + f(2λa− λb)− 2λ3f(a + b)

− 2λ3f(a− b)− 12λ3f(a)‖ ≤ φ1(a, b)
(2.2)

‖g(2λa + λb) + g(2λa− λb)− 2λ3g(a + b)

− 2λ3g(a + b)− 12λ3g(a)‖ ≤ φ2(a, b)

‖f(ab)− f(a)b3‖ ≤ ψ1(a, b)(2.3)

‖g(ab)− a3g(b)‖ ≤ ψ2(a, b)

‖a3f(b)− g(a)b3‖ ≤ ψ3(a, b)(2.4)

for all a, b ∈ A and all λ ∈ T = {λ ∈ C : |λ| = 1}. Also, if for each
fixed a ∈ A the mappings t → f(ta) and t → g(ta) from R to A are
continuous, then there exists a unique cubic double centralizer (L,R) on
A satisfying

‖f(a)− L(a)‖ ≤ 1

16
φ̃1(a, a),(2.5)

‖g(a)−R(a)‖ ≤ 1

16
φ̃2(a, a)(2.6)

for all a ∈ A.
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Proof. Let s = 1. Putting b = 0 and λ = 1 in (2.2), we have

‖f(2a)− 8f(a)‖ ≤ 1

2
φ1(a, a)

for all a ∈ A. One can use induction to show that

‖f(2na)

8n
− f(2ma)

8m
‖ ≤ 1

16

n−1∑

k=m

φ1(2
ka, 2ka)

8k
(2.7)

for all n > m ≥ 0 and all a ∈ A. It follows from (2.7) and (2.1) that

sequence {f(2na)

8n
} is Cauchy. Since A is a Banach algebra, this sequence

is convergent. Define

L(a) := lim
n→∞

f(2na)

8n
.(2.8)

Replacing a and b by 2na and 2nb, respectively, in (2.2), we get

‖f(2n(2λa + λb))

8n
+

f(2n(2λa− λb))

4n
− 2λ3f(2n(a + b))

8n

− 2λ2f(2n(a− b))

8n
− 12λ3f(2na)

8n
‖ ≤ φ1(2

na, 2nb)

8n

Taking the limit as n →∞, we obtain

L(2λa + λb) + L(2λa− λb)

= 2λ3L(a + b) + 2λ3L(a− b) + 12λ3L(a)
(2.9)

for all a, b ∈ A and all λ ∈ T. Putting λ = 1 in (2.9), we obtain that L
is a cubic mapping. Setting b := 0 in (2.9), we get

L(2λa) = 8λ3L(a)

for all a ∈ A , λ ∈ T. Since L is a cubic mapping, we obtain

L(λa) = λ3L(a)

for all a ∈ A and all λ ∈ T. Under the assumption that f(ta) is continu-
ous in t ∈ R for each fixed a ∈ A, by the same reasoning as in the proof
of [4], L(λa) = λ3L(a) for all a ∈ A and all λ ∈ R. Hence

L(λa) = L(
λ

|λ| |λ|a) =
λ3

|λ|3L(|λ|a) =
λ3

|λ|3 |λ|
3L(a)
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for all a ∈ A and λ ∈ C(λ 6= 0). This means that L is cubic homoge-
neous. It follows from (2.3) that

‖L(ab)− L(a)b3‖ = lim
n→∞

1

8n
‖f(2nab)− f(2na)b3‖ ≤ lim

n→∞
ψ1(2

na, b)

8n
= 0

for all a, b ∈ A. Hence L is a cubic left centralizer on A. Applying (2.7)

with m = 0, we get ‖L(a)− f(a)‖ ≤ 1

16
φ̃1(a, a) for all a ∈ A. Then the

cubic mapping L satisfying (2.5) is unique.
A similar argument gives us a unique cubic right centralizer R defined by

R(a) := lim
n→∞

g(2na)

8n
which satisfies (2.6). Now we let a, b ∈ A arbitrarily.

Since L is cubic homogeneous, it follows from (2.4) and (2.5) that

‖a3L(b)−R(a)b3‖ =
1

8n
‖a3L(2nb)− 8nR(a)b3‖

≤ 1

8n
[‖a3L(2nb)− a3f(2nb)‖+ ‖a3f(2nb)− g(a)(8nb3)‖

+ ‖8ng(a)b3 − 8nR(a)b3‖]

≤ 1

8n+1
φ̃1(2

nb, 2nb) ‖a‖2 +
ψ3(a, 2nb)

8n
+ ||g(a)−R(a)‖ ‖b‖3.

The right hand side of the last inequality tends to ‖g(a)−R(a)‖ ‖b‖3

as n →∞. By (2.6), we obtain

‖a3L(b)−R(a)b3‖ ≤ 1

16
φ̃2(a, a) ‖b‖3.

Since R is a cubic mapping, we obtain

‖a3L(b)−R(a)b3‖ =
1

8n
‖8na3L(b)−R(2na)b3‖

≤ 1

16
φ̃2(2

na, 2na) ‖b‖3

=
1

16

∞∑

k=n

φ2(2
ka, 2ka)

8k
‖b‖3.

Passing to the limit as n → ∞, we conclude a3L(b) = R(a)b3. Thus
(L,R) is a cubic double centralizer.

The proof for s = −1 is similar to s = 1.
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Corollary 2.6. Suppose that f : A → A is a mapping for which
there exist a mapping g : A → A and constants ε > 0 and 0 < p < 3
such that

‖f(2λa + λb) + f(2λa− λb)− 2λ3f(a + b)− 2λ3f(a− b)− 12λ3f(a)‖
≤ ε(‖a‖p + ‖b‖p),

‖g(2λa + λb) + g(2λa− λb)− 2λ3g(a + b)− 2λ3g(a− b)− 12λ3g(a)‖
≤ ε(‖a‖p + ‖b‖p),

‖f(ab)− f(a)b3‖ ≤ ε ‖a‖p ‖b‖p,

‖g(ab)− a3g(b)‖ ≤ ε ‖a‖p ‖b‖p,

‖a3f(b)− g(a)b3‖ ≤ ε ‖a‖p ‖b‖p

for all a, b ∈ A and all λ ∈ T. Also, if for each fixed a ∈ A the mappings
t → f(ta)and t → g(ta) from R to A are continuous, then there exists a
unique quadratic double centralizer (L,R) on A satisfying

‖f(a)− L(a)‖ ≤ ε

|8− 2p| ‖a‖
p,

‖g(a)−R(a)‖ ≤ ε

|8− 2p| ‖a‖
p

for all a ∈ A.

Proof. For j = 1, 2, putting φj(a, b) = ε(‖a‖p + ‖b‖p) and for i =
1, 2, 3, putting ψi(a, b) = ε ‖a‖p ‖b‖p in Theorem 2.5, we get the desired
results.

3. Stability of cubic multipliers

Throughout this section, assume that A is a complex Banach algebra.

Definition 3.1. We say that a mapping T : A → A is a cubic
multiplier if T satisfies the following properties:
1) T is a cubic mapping,
2) T is cubic homogeneous,
3) a3T (b) = T (a)b3 for all a, b ∈ A.

Now, we investigate the stability of cubic multipliers.
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Theorem 3.2. Suppose that s ∈ {−1, 1} and that f : A → A is a
mapping with f(0) = 0 for which there exist functions φ, ψ : A × A →
[0,∞) such that

φ̃(a, b) :=
∞∑

k=0

φ(2ska, 2skb)

8sk
< ∞,(3.1)

lim
n→∞

ψ(2sna, b)

8sn
= 0 = lim

n→∞
ψ(a, 2snb)

8sn
,

‖f(2λa+λb)+f(2λa−λb)−2λ3f(a+b)−2λ3f(a−b)−12λ3f(a)‖ ≤ φ(a, b),

‖a3f(b)− f(a)b3‖ ≤ ψ(a, b)(3.2)

for all a, b ∈ A and all λ ∈ T. Also, if for each fixed a ∈ A the mapping
t → f(ta) from R to A is continuous, then there exists a unique cubic
multiplier T on A satisfying

‖f(a)− T (a)‖ ≤ 1

16
φ̃(a, a)(3.3)

for all a ∈ A.

Proof. Let s = 1. By the same reasoning as in the proof of Theorem
2.5, there exists a unique cubic mapping T : A → A defined by

T (a) := lim
n→∞

f(2na)

8n

with satisfying T (λa) = λ3T (a) for all a ∈ A and all λ ∈ C. Also,

‖f(a) − T (a)‖ ≤ 1

16
φ̃(a, a) for all a ∈ A. Let a, b ∈ A be arbitrarily.

Then T is cubic homogeneous. By using (3.2) and (3.3), we have

‖a3T (b)− T (a)b3‖ =
1

8n
‖a3T (2nb)− 8nT (a)b3‖

≤ 1

8n
[‖a3T (2nb)− a3f(2nb)‖+ ‖a3f(2nb)− f(a)(8nb3)‖

+ ‖8nf(a)b3 − 8nT (a)b3‖]

≤ 1

8n+1
φ̃(2nb, 2nb) ‖a‖3 +

ψ(a, 2nb)

8n
+

1

16
φ̃(a, a) ‖b‖3.

It follows from (3.1) that

‖a3T (b)− T (a)b3‖ ≤ 1

16
φ̃(a, a) ‖b‖3.



446 Keun Young Lee and Jung Rye Lee

Finally, we obtain

‖a3T (b)− T (a)b3‖ =
1

8n
‖8na3T (b)− T (2na)b3‖

≤ 1

16
φ̃(2na, 2na) ‖b‖3

=
1

16

∞∑

k=n

φ(2ka, 2ka)

8k
‖b‖3

→ 0 as n →∞.

So a3T (b) = T (a)b3. Hence T is a cubic multiplier.
The proof for s = −1 is similar.

Corollary 3.3. Suppose that f : A → A is a mapping for which
there exist nonnegative real numbers ε and p with p 6= 2 such that

‖f(2λa + λb) + f(2λa− λb)− 2λ3f(a + b)− 2λ3f(a− b) + 12λ3f(a)‖
≤ ε(‖a‖p + ‖b‖p),

‖a3f(b)− f(a)b3‖ ≤ ε ‖a‖p ‖b‖p

for all a, b ∈ A and all λ ∈ T. Also, if for each fixed a ∈ A the mapping
t → f(ta) from R to A is continuous, then there exists a unique cubic
multiplier T on A satisfying

‖f(a)− T (a)‖ ≤ ε

|8− 2p| ‖a‖
p

for all a ∈ A.

Proof. Putting φ(a, b) = ε(‖a‖p + ‖b‖p) and ψ(a, b) = ε ‖a‖p ‖b‖p in
Theorem 3.2, we get the result.

4. Superstability of cubic double centralizers

In this section, we prove the superstability of cubic double centralizers
on Banach algebras which are cubic without order and cubic commuta-
tive.
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Theorem 4.1. Suppose that A is a Banach algebra cubic without
order and cubic commutative and s ∈ {−1, 1}. Let L ,R : A → A are
mappings for which there exists a function ψ : A×A → [0,∞) such that

lim
n→∞

n−3sψ(nsx, y) = 0 = lim
n→∞

n−3sψ(x, nsy),

‖x3L(y)−R(x)y3‖ ≤ ψ(x, y)

for all x, y ∈ A. Then (L,R) is a cubic double centralizer.

Proof. We first show that L is cubic homogeneous. To do this, choose
λ ∈ C and x, z ∈ A. We have

‖n3sz3(L(λx)− λ3L(x))‖ = ‖n3sz3L(λx)− λ3n3sz3L(x)‖
≤ ‖n3sz3L(λx)−R(nsz)(λx)3‖+ ‖λ3R(nsz)x3 − λ3n3sz3L(x)‖
≤ ψ(nsz, λx) + |λ|3ψ(nsz, x).

So

‖z3(L(λx)− λ3L(x))‖ ≤ n−3sψ(nsz, λx) + |λ|3n−3sψ(nsz, x).

Since A is cubic without order, we conclude that L(λx) = λ3L(x). The
cubicity of L follows from

‖z3(L(2x + y) + L(2x− y)− 2L(x + y)− 2L(x− y)− 12L(x))‖
= n−3s‖n3sz3L(2x + y) + n3z3L(2x− y)− 2n3sz3L(x + y)

− 2n3sz3L(x− y)− 12n3sz3L(x)‖
≤ n−3s[‖n3sz3L(2x + y)−R(nsz)(2x + y)3‖
+ ‖n3sz3L(2x− y)−R(nsz)(2x− y)3‖2‖R(nsz)(x + y)3 − n3sz3L(x + y)‖
+ 2‖R(nsz)(x− y)3 − n3sz3L(x− y)‖+ 12‖R(nsz)x3 − n3sz3L(x)‖]
≤ n−2s[ψ(nsz, 2x + y) + ψ(nsz, 2x− y) + 2ψ(nsz, x + y)

+ 2ψ(nsz, x− y) + 12ψ(nsz, x)]

for all x, y ∈ A.
Finally, since A is a cubic commutative Banach algebra, we have

‖z3(L(xy)− L(x)y3)‖ = n−3s‖n3sz3L(xy)− n3sz3L(x)y3‖
≤ n−3s[‖n3sz3L(xy)−R(nsz)(xy)3‖
+ ‖R(nsz)x3y3 − n3sz3L(x)y3‖]
≤ n−3s[ψ(nsz, xy) + ψ(nsz, x)‖y‖3]
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for all x, y, z ∈ A. So L(xy) = L(x)y3. Thus L is a cubic left centralizer.
We can similarly prove that R is a cubic centralizer. Since L is cubic
homogeneous, L(x) = n−3sL(nsx) for all n ∈ N and x ∈ A. Thus

‖x3L(y)−R(x)y3‖ = n−3s‖x3L(nsy)−R(x)(n2sy3)‖
≤ n−3sψ(x, nsy)

and hence by (4.1) we infer that x3L(y) = R(x)y3 for all x, y ∈ A. Thus
(L,R) is a cubic centralizer.

Corollary 4.2. Suppose A is a Banach algebra cubic without order
and cubic commutative and L, R : A → A are mappings for which there
exist a nonnegative real number ε and a real number p either greater
than 3 or less than 3, such that

‖x3L(y)−R(x)y3‖ ≤ ε ‖x‖p ‖y‖p

for all x, y ∈ A. Then (L,R) is a cubic double centralizer.

Proof. Using Theorem 4.1 with ψ(x, y) = ε ‖x‖p ‖y‖p, we get the
desired result.
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