
Korean J. Math. 17 (2009), No. 4, pp. 495–505

EXISTENCE OF NONNEGATIVE SOLUTIONS FOR

BOUNDARY VALUE PROBLEMS

RakJoong Kim

Abstract. By means of Green function and fixed point theorem
related with cone theoretic method we show that there exist multiple
nonnegative solutions of a Dirichlet problem

−[
p(t)x′(t)

]′ = λq(t)f(x(t)), t ∈ I = [0, T ]

x(0) = 0 = x(T ),

and a mixed problem

−[
p(t)x′(t)

]′ = µq(t)f(x(t)), t ∈ I = [0, T ]

x′(0) = 0 = x(T ),

where λ and µ are positive parameters.

1. Introduction

Let λ and µ be positive parameters. The purpose of this paper is
to study the existence of multiple nonnegative solutions of a Dirichlet
boundary value problem of the type :

−[
p(t)x′(t)

]′
= λq(t)f(x(t)), t ∈ I = [0, T ],(1)

x(0) = 0 = x(T ),(2)

where

(A) p(t) is positive and continuous,
(B) q : I → [0,∞) is continuous and not identically zero on any

subinterval of I,
(C) f : [0,∞) → [0,∞) is continuous and nondecreasing,
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(D) lim
x→+0

f(x) exists and there exist γ1, γ2 such that 0 < γ1 ≤ f(x)
x
≤ γ2

for large x,

and a mixed problem of the type :

−[
p(t)x′(t)

]′
= µq(t)f(x(t)), t ∈ I = [0, T ]

x′(0) = 0 = x(T )
(3)

with conditions (A), (B), (C) and

(E) lim
x→+0

f(x)

x
exists and there exist positive constants β, γ such that

f(x) ≥ β if x ≥ γ.

The above problems arise from many branches of the applied mathe-
matics, for instance, positive, radially symmetric solutions of nonlinear
partial differential equations. The cone method is a very useful tool to
investigate the existence of positive solutions of differential equations.
During last years the study of the existence of positive solutions for
boundary value problems by means of cone theoretic techniques has
evolved very extensively[1, 3-5, 7-10]. Among others many works have
been devoted to study for finding positive solutions of such problems by
means of fixed point theorems. Erbe and Wang[4] obtained positive so-
lutions belonging to a cone, and lying in an annular region. The method
of [5] were extended to higher order boundary value problems in [3]. In
the case of p(t) ≡ 1 consider the following equation

−x′′(t) = λq(t)f(x(t)), t ∈ I = [0, T ]

x(0) = 0 = x(T ).
(4)

The existence or nonexistence of solutions and multiplicity of solutions
for the equation (4) has been studied and obtained many results. See [6,
7, 11] and reference therein. In this paper we show that the equations
(1)–(2) have at least two or three solutions by means of Green function
and fixed point theorem.

Put ψ(t) =
∫ t

0
ds

p(s)
and consider the following conditions :

(H1) There exists τ ∈ (0, T/2) such that
∫ T

T−τ
ds

p(s)
≥ τ ψ(T ) and

∫ τ

0
ds

p(s)
≥

τ ψ(T ).

(H2)
∫ T/2

0
ds

p(s)
≤ 1

2
ψ(T ).
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Remark 1.1. In the case of 0 < T < 1
4
, p(t) = T 3

6t2−6Tt+2T 2 satisfies
the condition (H1) and (H2). If p(t) ≡ 1 and T = 1, the equalities in
the conditions both (H1) and (H2) are valid.

2. Preliminaries

We will apply the fixed point theorem to a completely continuous
integral operator whose kernel is G(t, s) called the Green function of

−[
p(t)x′(t)

]′
= 0,

x(0) = 0 = x(T ).

Then G(t, s) is explicitly given by

G(t, s) =

{
ψ(s)

(
ψ(T )− ψ(t)

)
/ψ(T ), 0 ≤ s ≤ t ≤ T,

ψ(t)
(
ψ(T )− ψ(s)

)
/ψ(T ), 0 ≤ t ≤ s ≤ T.

By means of condition (H1) we obtain an inequality similar to that of
E. R. Kaufmann and N. Kosmatov[8]

Lemma 2.1. Assume that τ ∈ (0, T/2) is the number satisfying the
condition (H1). For 0 ≤ s ≤ T we obtain

G(s, s) ≥ G(t, s) > 0 for t ∈ (0, T )(5)

G(t, s) ≥ τ G(s, s) for t ∈ [τ, T − τ ].(6)

Proof. We note that ψ(t) is increasing in I. The inequality (5) is
clear. Let t ∈ [τ, T − τ ]. If 0 ≤ s ≤ t ≤ T , by (H1) we obtain
ψ(t) ≤ ψ(T − τ) = ψ(T )− {ψ(T )− ψ(T − τ)} ≤ (1− τ)ψ(T ). So (6) is
valid for s ≤ t. If T ≥ s ≥ t ≥ 0, we have ψ(t) ≥ ψ(τ) ≥ τψ(T ) ≥ τψ(s).
Thus (6) is valid for s ≥ t.

We note that the fixed points of the operator

(7) Tλx(t) = λ

∫ T

0

G(t, s)q(s)f(x(s)) ds

are solutions of (1)–(2). We employ a cone in a Banach space X to
establish the existence of fixed points of (7). We note that

(8) ||Tλx(t)|| ≤ λ

∫ T

0

G(s, s)q(s)f(x(s)) ds.
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Definition. Let X be a Banach space and Ω a closed convex set
⊂ X. We call Ω 6= {0} a cone if

(i) τ Ω ⊂ Ω for all τ ≥ 0.
(ii) Ω ∩ (−Ω) = {0}.
Proposition 2.2. [2] Let X be a Banach space with norm || · ||,

Ω ⊂ X a cone, ϕ : Ω → [0, ∞) continuous and concave, ϕ(x) ≤ ||x|| on

Ω, T : Ωr → Ω compact where Ωr = Ω ∩Br(0). Suppose also that there
exist 0 < σ < ρ < r such that

(i) { x |ϕ(x) > ρ} ∩ Ωr 6= φ,
(ii) ϕ(Tx) > ρ on { x |ϕ(x) ≥ ρ} ∩ Ωr,
(iii) ||Tx|| < σ on Ωσ.

Then we have

(a) T has at least two fixed points if ϕ(Tx) >
ρ

r
||Tx|| on {x ∈

Ωr | ||Tx|| > r}.
(b) T has at least three fixed points if T (Ωr) ⊂ Ωr.

3. Main results

Let X = C(I) be the space of continuous functions x : I → R with
the norm ||x(t)|| = maxt∈I |x(t)|. We define a cone Ω by

Ω = {x ∈ C(I) |x(t) ≥ 0 for all t ∈ I}
It is not difficult to show that the operator Tλ : Ωr → Ω defined by (7)

is compact where Ωr = Ω ∩Br(0) and r > 0(see p54 in [12]). If we set

ϕ(x) = min
t∈[τ, T−τ ]

x(t)

for x ∈ Ω it is obvious that ϕ : Ω → [0, ∞) is continuous, concave and
ϕ(x) ≤ ||x||. Then (i) of Proposition 2.2 holds for any r and ρ satisfying
0 < ρ < r.

3.1. The Dirichlet boundary value problem.

In this section we assume that τ ∈ (0, T/2) is a fixed number satisfying
the condition (H1). We consider the Dirichlet boundary value problem
(1)–(2) with conditions (A), (B), (C) and (D).
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Theorem 3.1. There exist positive constants σ, λ0 such that

||Tλ0x|| < σ for x ∈ Ωσ

Proof. Put lim
x→+0

f(x) < A. There exists δA > 0 such that

0 ≤ x ≤ δA ⇒ 0 ≤ f(x) < A

Then taking x ∈ Ω with ||x|| ≤ δA we have by (5)

Tλx(t) < λ A

∫ T

0

G(s, s)q(s) ds.

Put σ = δA. If we choose 0 < λ0 so that

(9) λ0 A

∫ T

0

G(s, s)q(s) ds < σ,

the proof is then complete.

Remark 3.2. Even if the condition lim
x→+0

f(x) is replaced with lim
x→+0

f(x)

x
Theorem 3.1 is valid.

Theorem 3.3. Assume that σ and λ0 are the numbers determined
in Theorem 3.1 and that the inequality

(10) γ1 >
1

λ′ τ
∫ T−τ

τ
G(s, s)q(s) ds

is valid for some λ′ satisfying λ′ < λ0. Then there exist positive constants
ρ, and r with σ < ρ < r such that

ϕ(Tλ′x) > ρ on { x |φ(x) ≥ ρ} ∩ Ωr.

Proof. There exist positive numbers B1 and δB1 such that f(x)
x

> B1 >
1

λ′ τ
∫ T−τ

τ G(s,s)q(s) ds
for x with x ≥ δB1 . It follows that

(11) λ′ τ B1

∫ T−τ

τ

G(s, s)q(s) ds > 1.

and that x ≥ δB1 implies f(x) > B1x. Then taking x ∈ Ω with ϕ(x) ≥
δB1 , we have by (6)

ϕ(Tλ′x) > λ′ τ B1

∫ T−τ

τ

G(s, s)q(s) ds · ϕ(x).(12)

Put ρ = max{2σ, δB1} and r = kρ, k > 1. Here k will be determined in
Theorem 3.4. Therefore our theorem follows.
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Theorem 3.4. Let the assumptions of theorem 3.3 be valid. Then
there exist positive constants λ1, λ2 and r such that the equation (1)–(2)
with λ ∈ [λ1, λ2] has at least two solutions in Ωr.

Proof. For τ ′ with 0 < τ ′ < min{1, τ} we take r = ρ/τ ′ in the proof
of Theorem 3.3. From (9), (10) and (11) there exist λ1, λ2 satisfying
0 < λ1 < λ′ < λ0 < λ2 such that we have

λ1 τ B1

∫ T−τ

τ

G(s, s)q(s) ds > 1(13)

λ2 A

∫ T

0

G(s, s)q(s) ds < σ.(14)

where λ0 and λ′ are numbers determined in Theorem 3.1 and Theorem
3.3, respectively. We note that both (13) and (14) are valid for λ sat-
isfying λ ∈ [λ1, λ2]. Consider the operator (7) with λ ∈ [λ1, λ2]. Let
||Tλx|| > r and x ∈ Ωr. We have then by (6)

ϕ(Tλx) ≥ λ τ ′
∫ T

0

G(s, s)q(s)f(x(s)) ds

because of τ ′ < τ . Thus our theorem follows from (8) and (a) of Propo-
sition 2.2.

Theorem 3.5. Let λ1 and λ2 be the numbers determined in Theorem
3.4. Assume that the assumptions of theorem 3.3 hold and that

γ2 <
1

λ2

∫ T

0
G(s, s)q(s) ds

.(15)

Then there exist positive constants λ3 and R satisfying λ2 < λ3, r ≤ R
respectively, such that the equation (1)–(2) with λ ∈ [λ1, λ3] has at least
three solutions in ΩR

Proof. From (D) and (15) there exist positive constants λ3, B2 and δB2

such that λ2 < λ3 and f(x)
x

< B2 < 1

λ3

∫ T
0 G(s,s)q(s) ds

for x with x > δB2 .

Then x > δB2 implies

λ3

∫ T

0

G(s, s)q(s) ds · f(x) < x.(16)
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Take R so large that R ≥ max{r, δB2}. Let ||x|| ≤ R for x ∈ Ω. Then
since maxx∈[0, R] f(x) = maxx∈[δB2

, R] f(x), we obtain

λ3

∫ T

0

G(s, s)q(s) ds · max
x∈[0, R]

f(x) ≤ R for ||x|| ≤ R.(17)

Consider the operator (7) with λ ∈ [λ1, λ3]. It is clear that Tλ(ΩR) ⊂ ΩR.
So the proof is complete.

Remark 3.6. If λ′τ ≤ λ2, (10) and (15) are not compatible.

3.2. The mixed problem.

In this section we assume that the condition (H2) is valid and that τ
with 0 < τ < min {1/2, T/2} is a fixed number. We consider the mixed
problem (3) with conditions (A), (B),(C) and (E). The Green function
K(t, s) of

−[
p(t)x′(t)

]′
= 0

x′(0) = 0 = x(T )
(18)

is given by

K(t, s) =

{
ψ(T )− ψ(t), 0 ≤ s ≤ t ≤ T,

ψ(T )− ψ(s), 0 ≤ t ≤ s ≤ T.

We note that K(·, s) is nonnegative and nonincreasing for every fixed s.
If we set

φ(x) = min
t∈[0, τ ]

x(t)

for x ∈ Ω, it is obvious that φ : Ω → [0, ∞) is continuous, concave and
φ(x) ≤ ||x||. Let Sµx(t) be denoted by

(19) Sµx(t) = µ

∫ T

0

K(t, s)q(s)f(x(s)) ds.

Then standard arguments show that the map Sµ : Ωr → Ω is compact
for any r with 0 < r.

Lemma 3.7. For 0 ≤ s ≤ T the inequalities

(20)
K(s, s) ≥ K(t, s) ≥ 0 for t ∈ I,

K(t, s) ≥ τ K(s, s) for t ∈ [0, τ ],

are valid.
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Proof. Since by (H2) (1 − τ)ψ(T ) − ∫ τ

0
ds

p(s)
) ≥ (1

2
− τ)ψ(T ) > 0 for

τ ∈ (0, T/2), our lemma follows.

Theorem 3.8. There exist positive constants ρ and µ0 such that

φ(Sµ0x) > ρ on { x |φ(x) ≥ ρ} ∩ Ωr

where r with ρ < r will be determined in Theorem 3.10.

Proof. Taking into account of the condition (E), we put ρ = γ and let
φ(x) ≥ ρ. It follows from (20) that

φ(Sµx) ≥ µ min
t∈[0, τ ]

∫ T

0

K(t, s)q(s)f(x(s)) ds,

≥ µτ

∫ τ

0

K(s, s)q(s) ds · β.

We choose µ0 satisfying

(21) ρ′ = µ0τ

∫ τ

0

K(s, s)q(s) ds · β

for some ρ′ satisfying ρ < ρ′. Therefore our theorem is proved.

Theorem 3.9. Let ρ and µ0 be the numbers determined in Theorem
3.8. Assume that the inequality

(22) lim
x→+0

f(x)

x
<

1

µ′
∫ T

0
K(s, s)q(s) ds

is valid for some µ′ satisfying µ′ > µ0. There exist positive constants σ,
µ1 and µ2 satisfying σ < ρ and µ1 < µ0 < µ′ < µ2, respectively, such
that the operator (19) with µ ∈ [µ1, µ2] satisfies

(23) ||Sµx|| < σ for x ∈ Ωσ.

Proof. There exists α such that

(24) lim
x→+0

f(x)

x
< α <

1

µ′
∫ T

0
K(s, s)q(s) ds

.

Thus it follows that there exists µ2 > 0 satisfying µ′ < µ2 such that

(25) αµ2

∫ T

0

K(s, s)q(s) ds < 1
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Similarly from (21) there exists µ1 > 0 with µ1 < µ0 such that

(26) ρ < µ1τ

∫ τ

0

K(s, s)q(s) ds · β.

On the other hand, in view of (24) there exists δα > 0 such that

0 < x ≤ δα ⇒ f(x) < αx.

Taking σ = δα < ρ, we obtain (23) for the operator (19) with µ ∈
[µ1, µ2]. So the proof is complete.

Theorem 3.10. Let µ1 and µ2 be the numbers determined in The-
orem 3.9. Assume that the assumption of theorem 3.9 is valid. Then
there exists r with r > ρ such that the equation (3) with µ ∈ [µ1, µ2]
has at least two solutions in Ωr.

Proof. Let µ1 ≤ µ ≤ µ2. Since Sµx(t) is nonincreasing in [0, τ ], we
obtain

φ(Sµx) = Sµx(τ)

= µ
{∫ τ

0

(ψ(T )− ψ(τ))q(s)f(x(s)) ds +

∫ T

τ

(ψ(T )− ψ(s))q(s)f(x(s)) ds
}

= −µ

∫ τ

0

{
ψ(τ)− ψ(s)

}
q(s)f(x(s)) ds + Sµx(0).

By (H2) it follows that 0 ≤ ψ(τ)− ψ(s) < ψ(T )
2

for 0 ≤ s ≤ τ . Thus we
have

φ(Sµx) > −µψ(T )

2

∫ τ

0

q(s)f(x(s)) ds + Sµx(0)

=
{

1− µψ(T )
∫ τ

0
q(s)f(x(s)) ds

2Sµx(0)

}
Sµx(0).

On the other hand, since ψ(s) < ψ(T )
2

for 0 ≤ s ≤ τ < T/2, it is obvious
that

Sµx(0) >
µψ(T )

2

∫ τ

0

q(s)f(x(s)) ds.

Put θ =
{

1 − µψ(T )
∫ τ
0 q(s)f(x(s)) ds

2Sµx(0)

}−1

and r = θρ. Then x ∈ Ωr and

||Sµx|| > r imply

φ(Sµx) >
Sµx(0)

θ
=

ρ

r
Sµx(0).(27)
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We note that ||Sµx|| = Sµx(0). So the proof is complete.

Theorem 3.11. Let µ1 and µ2 be the numbers determined in The-
orem 3.9. Assume that the assumption of theorem 3.9 is valid. Then
there exist positive constants µ3 and R satisfying µ2 < µ3 and r ≤ R,
respectively, such that the equation (3) with µ ∈ [µ1, µ3] has at least
three solutions in ΩR where r is the number determined in Theorem
3.10.

Proof. First, assume that the function f is bounded above by M > 0.

Take µ3 such that µ2 < µ3 and r ≤ µ3 M
∫ T

0
K(s, s)q(s) ds. Put R =

µ3M
∫ T

0
K(s, s)q(s) ds and let ||x|| ≤ R. Then for any µ ∈ [µ1, µ3] we

have Sµ(ΩR) ⊂ ΩR. Thus (3) has at least three solutions in ΩR. Next,
assume that the function f is unbounded. Choose a large number R
with R ≥ r and consider a function f ∗ = f · χ[0,R] where χ[0,R](t) = 1 if
x ∈ [0, R], 0 otherwise. Let

S∗µx(t) = µ

∫ T

0

K(t, s)q(s)f ∗(x(s)) ds.(28)

Since then by (C) f ∗ is bounded above, S∗µx has at least three fixed

points. Let us show that all three fixed points lie in ΩR. If S∗µx = x,
x(t) is nonincreasing. Assume that R < ||x||. There exists a t0 ∈ I such
that x(t0) = R and x(t) ≥ R for t ∈ [0, t0]. From the equation (3) we
obtain

x(t) = µ

∫ T

t

1

p(s)

∫ s

0

q(u)f ∗(x(u)) duds.(29)

Then it follows that

x(0) = µ

∫ T

t0

1

p(s)

∫ s

0

q(u)f ∗(x(u)) duds

+ µ

∫ t0

0

1

p(s)

∫ s

0

q(u)f ∗(x(u)) duds

= x(t0).

So we have x(t) ≤ ||x|| = x(0) = R for t ∈ I, which proves our theorem.
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