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CERTAIN CUBIC POLYNOMIALS OVER FINITE FIELDS

Hyung DonN KiM, JAE MooN KiM, AND IKKWON YIE

ABsTRACT. Motivated by XTR cryptosystem which is based on an irre-
ducible polynomial z2 — cx? + cPx — 1 over F2, we study polynomials
of the form F(c,z) = 2% — cz? 4 ¢z — 1 over Fp with ¢ = p™. In
this paper, we establish a one to one correspondence between the set of
such polynomials and a certain set of cubic polynomials over Fy. Our ap-
proach is rather theoretical and provides an efficient method to generate
irreducible polynomials over F..

1. Introduction

Throughout this paper, we denote the finite field with p™ elements by Fpn,
where p is an odd prime. Recently, in [1], A. K. Lenstra and E. R. Verheul
introduced a new cryptosystem called XTR. Let F(c,2) = 2° —cz?+cPz—1 be
an irreducible polynomial in Fp2[z] for some element ¢ € Fjz, and h a root of
F(c,x). For each integer k, put c; = Tr(h*), where Tr is the trace from Fpe to
Fy2. The idea of XTR (Efficient and Compact Subgroup Trace Representation)
is that one can make use of {c;} instead of the subgroup (h) = {h*} of Fs
in implementing various cryptosystems such as Diffie-Hellman key agreement
protocol and ElGamal system. The efficiency of computation of {c;} from
given ¢ makes the cryptosystem work and the difficulty of finding & from ¢
makes it safe. Note that {cx} is in Fj2, while (h) = {h*} is in Fys. Thus XTR
system has the obvious advantages in both computation and communication
(XTR reduces the cost to %) with maintaining the same security level as one
works with {h*} ([1]).

Motivated by their work, in this paper, we study cubic polynomials of the
form F(c,z) = 2® — ca? + ¢%z — 1, where ¢ € F,2 and F, = Fyn is an arbitrary
finite field with ¢ elements of characteristic p. Our primary concern is to study
the irreducibility of such polynomials. In [1], [2], and [3], several algorithms of
irreducibility test of F(c, z) are given when ¢ = p is a prime. The best algorithm
for irreducibility test known so far requires about 1.8log, p multiplications in
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F,. Our approach is somewhat different. Fix a quadratic nonresidue ¢ in F,.
In Section 2.1, we will show that there is a one to one correspondence between
the set of irreducible polynomials of the form z3 — cz? + c%z — 1 in Fjp[z]
and the set of irreducible polynomials of the form z3 — taz? + bz + a in Fy[z].
The correspondence is so explicit that one can determine ¢ € Fyz from given
a and b in F,, and vice versa. Therefore in order to generate an irreducible
polynomial 3 — ez + ¢?z — 1 in Fg2[x], start with an irreducible polynomial
z®—tax?+bz+a in Fy[r] and get the corresponding one in Fiz[z]. In Section 2.2,
we compare the set of all polynomials of the form z3 — cz? + ¢z — 1 in Fpz[z]
with that consisting of polynomials of the form x3® — taz? + bz + a in F,z]
regardless of their irreducibilities. We will show that the factorization types
of the corresponding polynomials agree under the correspondence. The exact
meaning of factorization types will be explained in Section 2. In Section 2.3,
we will describe another one to one correspondence. Namely, we will prove that
there is a one to one correspondence between the set of irreducible polynomials
of the form z® — cz? + ¢%z — 1 in F2[z] and the set of irreducible polynomials
of the form 23 + uz? — tz + v in F,[x]. This correspondence together with the
previous one provides an even easier way to generate irreducible polynomials
F(c,x).

In Section 3, we discuss several examples. The first example given in Sec-
tion 3.1 deals with irreducible polynomials over F,. Section 3.2 explains how
to decide whether a given element t in F is a square. This plays a crucial
role in finding irreducible polynomials F(c, z) in extension fields since the cor-
respondences mentioned above are described via a quadratic nonresidue t. In
Section 3.3, we give examples of irreducible polynomials F(c,z) in extension
fields. Finding irreducible polynomials over extension fields is computationally
somewhat complicated. We will use multiplication tables of normal bases to
take care of the difficulty. For the concept of multiplication tables, refer to [4].

2. Cubic polynomial F(c,z) = x® — cz? + c%z — 1 over Fp

In this section we will show the two one to one correspondences mentioned in
the introduction. Let p be an odd prime and fix a quadratic nonresidue ¢ in Fy,
where ¢ = p™. Note that a quadratic nonresidue always exists for p # 2. Let
a be an element in Fy2 satisfying a® = t. Then F2 = Fy(a) and Fjs = Fp(a),
and o satisfies a? = (a2)g:2*1a = t*5 o, = —q. For an element c in F,2, define a
cubic polynomial F(c,z) in Fpelz] by F(c,z) = z° — ¢z + ¢%z — 1. Let hq, ho
and h3 be the roots of F(c,z). As in [1], one can check F(c,h; ?) =0, so that
{h1,h2,h3} = {h{?, h3?, h3?}. Thus the roots of F satisfy one of the following
three:

(i) hs=h;%fori=1,2,3,
(i) hi =h7?% ho=h3% hz = h 7,

(iii) h1 =h3? he =h3? hg =h 7.
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Remark 1. (1) Cases (ii) and (iii) should be understood as to hold after a
suitable rearrangement of k1, hy and hg if necessary.

(2) We classify F(c,z) into types (F-I), (F-II), and (F-III) if the roots of
F(c, z) satisfy (i), (ii), and (iii), respectively.

(3) If hy = h; Y, then h; is in F,2. Hence if F is irreducible, then it is of type
(F-III).

2.1. First one to one correspondence

In this subsection, we prove the first one to one correspondence. Suppose
that F(x) = F(c,z) = 2® — cz? + %z — 1 is irreducible over Fj2. Since Fz =
Fy(a), we can write ¢ as ¢ = m + na for some m,n € F,. Note that if
m = —1, then ¢? + ¢ = (-1 + na)? + (-1 + na) = —2, so that F(-1) = 0,
which contradicts the irreducibility of F(z). Thus m # —1. Since F is of
type (F-III), h; = hi_q3 for ¢ = 1,2,3. So the norm of a root h of F(c,z)
from Fis to Fjs equals 1. Hence, by Hilbert theorem 90, h = g‘13_1 for some
9 € Fs. Since Fye = Fys(a), g = 71 + Yea for some 71, v2 € Fgs. So we
have h = g ! = (71 + 720)7° 1. Note that a? = (@?')? = af = —a. Thus
v1 # 0, for otherwise, h = gqa_1 = —_%%a = —1, which cannot happen since
F(c, ) is irreducible. Hence, h = g?" ~1 = (v1(1+ {%oz))qs'1 =1+ Bo)?* =1,
where § = Qf Therefore, for each 4, 1 <14 < 3, there is a 8; € Fs such that

h,=(1+ ,Bia)‘f‘l. Now we compare the coefficients of the equation
Fle,z) = 2 —ca* +clz—1

(@~ (1+Ba)" )@= (1+ ) e — (L+ f)® ).

Since
q3_1 _ 1-— ﬂia
1+ Gicx
by comparing the constant terms, we have
(1= Bra)(1 = Baa)(1 — Bsax) _
(1 + 510)(1 + B2a)(1 + B30)

(1+ Bia)

from which we get

B1 + B2 + B3 = —B15208st.

And also by reading the coefficients of 2, we obtain

c = m+na

1-fa 1-—0Fa 1-7Fa

1+ 6 14+ 06a 1+ 350

3 — (6182 + P2B5 + BaB)t + ((B1 + B2 + B3) — 3515285t )ex
1+ (8182 + (205 + Baf)t '
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So
— (8152 + P23 + B3 )t
T 1+ (BB + 2B + BaBu)t
n = -4 3205t
1+ (8182 + B2f3 + Bsbr)t’
Therefore
i —B1B203t = B + B2 + B3, t( n 1) = 1Bz + P2Bs + Bsbr-

Hence

3 no o, 3-m n

mr1® timin T mrp - @A - B = f)
Note that this polynomial is irreducible over F; since all Bi’s are in Fys, but
not in Fy.

To summarize, for each irreducible polynomial F(z) = F(c,z) = % — cz® +
cx — 1 in Fplx] w1th c=m+ na, we associate an irreducible polynomial
Glz) = z®— 2r2?+ W:H' Ty in Fyla]. Note that G(z) is a polynomial
of the form z° — atz? + bz + a.

Conversely, suppose an irreducible polynomial G(z) = z* — atz® + bz + a in
F,|z] is given. Note that bt # —1, for otherwise, ta would be a root of G(x).
Let 31, 32 and B3 be the roots of G(z). By comparing the coefficients of

2® —atz’ + br +a = (x - )z - B2)(z ~ Bs),

we have
B+ B2 + B3 = —B1520t.
Hence
-1 3_1 _ (1= Bra)(1 = Baa)(1 — Bsa) _
(U Ba) 0 )T ) = (T T o) 17 o)

Therefore

(14 B1)” (1 + o)L + (1 + Bae) (1 + Bac)? ™
+(1+ Bs2)” (1 + pra)? !

_ 1 + 1 N 1

T Q4 Ba)” T (14 BTl (1 + fea) Tt

_ 14+ B 1+Ba 1+ b3

11— 1-fa 1-fsa

:(1“/8la+1~,@201 1—ﬂ3a)q

1+Bia 1+ pa 14 B3

The last equality holds since we may assume 3{ = (2,85 = (85 and 3] = f1.
Put

F(z) = (@ - (1+ B0 )& ~ (1+ B0’ ") (& = (1 + Bo0)®* ).
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Then F(z) is irreducible over Fj2 since the roots of F are conjugate to each
other over Fi2. Put

c=148a)" "+ (1+ Boa)” 1+ (14 B3a)® L.

Then above computation shows that the coeficient of x equals ¢?. Therefore,
F(z) is of the form F(z) = 3 — cz® + ¢z — 1. Note that

c = (14 Bloz)qs_l +(1+ ﬁga)QS_l +(1+ ﬁga)qs_l
_ 3= (B1Ba+PBafs + BsBu)t + (B + B2 + B3) — 3515 fst)x
L+ (8182 + B2fs + Baf)t
3 bt+ data
- 1+ bt

Hence for a given irreducible polynomial G(z) = z® — atz? + bz + a in Fy[z],
we can associate an irreducible polynomial F(z) = F(c,z) = 3 —cz? + ¢z — 1
in Fiz[z] with ¢ = 3=bitiate  Therefore, we have the following theorem.

Theorem 1. There is o one to one correspondence between the set of irre-
ducible polynomials in Fp(x] of the form z3 — ca® + %o — 1 and the set of
irreducible polynomials in Fy[z] of the form x3 — atz® + bz +a. The correspon-
dence is given by:

For a given F(z) = F(c,z) = 2% — cx? + c%x — 1 with ¢ = m + no, we
associate G(z) = z3

2 p—

- mT—L}—lx + t(m—’;—nl)a: + t(mn—i-l) '

Conversely, for a given G( ) = 23 — atx® + bz + a, we associate F(c,x) =
2% —cx® + cfz — 1 with c = 358 4 {2 a.
Proof. It remains to check that the correspondence is one to one. Suppose
that F(z) = 23 — cx? + 9z — 1 is given with ¢ = m 4+ na. Then we get

_ .3

G(z) = z°— m+1x + t(m+1)x+ t(m+1) The cubic polynomial over F,z obtained
from G(z) is Fi(z) = 2% — c12% + ¢z — 1 with ¢; = 82 4+ 2 where

b1 th+1
a= t—m and b = m+1) Since

tmﬂj+3 4t

_n_
1
o = Hm-+1)

P a=m+na=c,

t(m+1) +1 t(m+1) +1
we get F(c,z) back. Conversely, if we start with G and find the corresponding
F, then the polynomial in F,[z] obtained from F is G again. Therefore, the
correspondence is one to one. 0

2.2. Types of F and G
Let G(z) be any cubic polynomial in F,[z] of the form G(z) = z° — atz? +
bx + a with bt # —1. We classify G(z) into three types:

(G-I) G(z) factors into a product of three linear polynomials in Fy[z],
(G-II) G(z) factors into a product of a linear polynomial and a quadratic
polynomial in Fj[z],
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(G-III) G(z) is irreducible in Fy[z].

Let F(z) be a cubic polynomial in Fz(z] of the form F(x) = F(c,z) =
2® —cx? + %z — 1in Fp[z] with m # —1, where ¢ = m+na. Regardless of the
irreducibility, we associate F(c,z) to G(z) as in Theorem 1. The same argu-
ment of the proof of Theorem 1 shows that this is a one to one correspondence.
In this subsection, we will show that under this correspondence, the types of
F and G agree.

3

Corollary 2. Under the above correspondence, the types of F and G agree.

Proof. Theorem 1 says that if one of F or G is of type III, then so is the other.
Thus it remains to check that the correspondence preserves types 1 and II. For
this, it is enough to show that the number of roots of F' satisfying h™7 = h
equals the number of roots of G in F,.

Note that a root h of F{c,x) satisfies h = h™? if and only if the norm of h
from Fz to F, equals 1. By Hilbert theorem 90, the norm of h equals 1 if and
only if A = u?~! for some u in Fjp2. From the condition m # —1, one can check
that h = u9~! for some u € Fz if and only if h is of the form h = (1+da)?™! for
some d € F,. Thus it suffices to show that F(c,h) = 0 if and only if G(d) =0,
where h = (1 + da)?"! with d € F,.

Suppose that F(c,h) = 0. Then

3 2

F(c,h) = (%—__‘?Z—Z) — (m+ na) (i—;%) + (m —nao) (1;32) -1=0.
By clearing the denominators, we have

(1—da)? — (m+na)(1 —da)?(1+da)+ (m—na)(1 —da)(1+da)?~ (1 +da)® = 0.
This yields

t(m + 1)d® — ntd® + (3 —m)d +n = 0.
Therefore
n 3—m n
d? d =0.
m+1 +t(m+1) +t(m+1)
The converse can be justified by reversing the order of above computations.
This proves the corollary. |

G(d) = d° -

2.3. Second one to one correspondence

In this subsection, we will prove the second correspondence. Namely, we will
show that there is a one-to-one correspondence between the set of irreducible
polynomials in F[z] of the form z3 — cz? + ¢?z — 1 and the set of irreducible
polynomials in Fy[z] of the form 2® 4 ux? — tz + v. This correspondence is
achieved by associating F(z) = &® — cz? + ¢z — 1 = (z — (1 + f1a)? ") (z —
1+ Be)” ")z — (1+ B30)? 1) to G(z) = (v — £)(z — £)(z — %) instead
of G(z) = (z — )z — B2)(= — B3). If G(z) = (z — Bi)(z — Ba)(z — Bs) =
% — ate® + bz + a, then G(z) = (z — z)(@ — 5 ) (& — 5;) = 2%+ bp? —tx+ 1.
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Thus @(z) is of the form z° + uz? ~ tx +v with u = 3 and v = é Conversely,
if G(z) = z® + uz? — tx + v, then G = (é>(f> =g3 - Lg%+ 4g 4 1,
This correspondence between G{x) and G(z) gives a one to one correspon-

dence between F(x) and G(z). To be precise, 1et F{e, x) =23 —cx? + cqa: -1,

where ¢ = m + na. Then we have G(z) = z° ~ mw + t(rn+1)T + T

From G(:c), we get G(z) = 7 + =@ L t(mH). Conversely, suppose
G(z) = o +ux? —tz+uv is given. Then we get G(z) = 2° - %$2+”m+ 1. And

. .3 2 . _ —t %43
from G(z), we obtain F(e,z) = 2* — ez + ¢z ~ 1 with ¢ = FESS s t—-—ﬁa =

—tu+3v 44t 4t
tutv tu+v

So we have the following theorem.

Theorem 3. There is a one-to-one correspondence between the set of irre-
ducible polynomials in Fglz] of the form 2% — cz? + 9z — 1 and the set of
irreducible polynomials in Fylz] of the form z* + uz® — tz +v. The correspon-
dence ts given by:

For a given F(c,z) = z° — cx® + %z — 1 with ¢ = m + na, we associate

G(z) = o® + =1g? gy 4 Ul

Conversely for a given G{a:} =2 + ua: —~tx + v, we associate Flc,z) =

— T —tu+3v
x% — cx? + clz ~ 1 with ¢ = et

tu,+v
3. Examples of irreducible polynomials F(c, )

In this section we study examples of irreducible polynomials F(c, z) in Fyz [z]
by using the methods developed in Section 2.

3.1. Examples when g =p

In this subsection, we will find irreducible polynomials F(c, z) in F2[z] when
p # £1 mod 7. This example can be generalized to other modulii. Examples
of irreducible polynomials F{c,z) over extension fields will be given later.
let (=(; bea primitive Tthroot of 1. f p=3 or 5 mod 7 then Fp(¢) =
Fpe. SoF(C—i—C 1) =Fp. fp=2or4 mod 7, then F,({) = Fp:. Note that
F(+¢h) = ps in th1s case, too. Thus conjugates of ¢ + C" over F, are
(4¢3 +¢2% and ¢* + (. Note that
C+HH+HEE@+HH+ T+ = -1,
CHHE+T+H P+ T+ TN+ = -
and (C+ (T +CTH =1
Therefore Irr (( + (71, Fp) = 2% + 2% — 2z — 1. Let
Hz)=hr((+¢ L F) =2 + 0% - 22— 1.

Suppose that p = £3 mod 8. Then 21is a quadratic nonresidue mod p.
So H(zx) itself is of the form G(z) = z® + uz? —tx + v with u = 1,t = 2
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and v = —1. Thus by using Theorem 3, we obtain an irreducible polynomial
F(c,z) = 2® — c2® + Pz — 1 with ¢ = ~5 + 8a, where a® = ¢ = 2.

We can play around with H(z) a little more. Suppose that p = 3 mod 4,
and consider

Hz+2) =Tt (C+¢ 1 =2,F) =2 + Ta® + 14z + 7.

Since p =3 mod 4, —1 is a quadratic nonresidue mod p. Thus H(z +2) is an
irreducible polynomial of the form G(z) = z® —atz? +br+a witha = 7,b = 14
and t = —1. Hence, by Theorem 1, the polynomial F(c,z) = 2% —cz®+cPz—1
with ¢ = _% + —f—%a is irreducible over Fj2, where a?=-1.

Next, we consider

Hz+1)=Inr((+¢ - 1LF)=2*+42° +3z - 1.

This polynomial cannot be of the form G(x) = 23 —atxz?+bz+a for any p since 4
is a square. But if —3 is a quadratic nonresidue mod p, then 3 +42%43x—1is
of the form G(z) = &% + uz® —tz+v withu = 4, v = ~1 and t = —3. Hence we
get an irreducible polynomial F(c,z) = 23 — cx? +cPx — 1 with ¢ = ——% + —%a,
where a? = —3. In this way, we can find plenty of irreducible polynomials
F(c,x) from a single irreducible polynomial H(z) in Fp[z].

3.2. Squares in F,

To determine irreducible polynomials F(c,z) from G(z) or G(z), we need
a quadratic nonresidue ¢ in F,. When F, = F,, one can easily test whether a
given ¢ € F is a quadratic nonresidue by just computing the Legendre symbol
(f;). In this subsection, we prove a criterion on whether a given ¢ in an extension
field Fy is a square or not.

Lemma 4. Let ¢ = p™. Then t is a square in F; if and only if N(t) is a
square in Fy, where N is the norm map from Fy to F,.

Proof. Suppose t is a square in Fy. So t = 4? for some v € Fy. Then
N(t) = N(v*) = (N(7))®. Thus N(t) is a square in F;;. Conversely, suppose
N(t) = d? for some d € Fj. Since the norm map is surjective, there is an
element t’ € F such that N(t') = d. Then we have N (#'?) = d2 = N(t). So,
by Hilbert theorem 90, ¢ = #'2£P~! for some & € F;. Hence t = (£ By Yisa
square in F\. a

3.3. Examples over extension fields

Let ¢ = p™ as before. In this subsection, we will find irreducible polynomials
F(c, x) over extension fields Fz under the following restrictions on m and p: (i)
6m+ 1 = r is a prime, (ii) p is a primitive root mod r, i.e., the multiplicative
order of p in (Z/rZ)* is r — 1 = 6m. Note that there are infinitely many such
m’s and p’s: Choose a prime r and a primitive root g mod 7 such that r =1
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mod 6. Then a prime p satisfying p = ¢ mod r together with m = "—gl satisfies
above conditions.

A brief outline to find irreducible polynomials is as follows. Let { = ¢,
be a primitive rth root of 1. So we have F,(¢) = Fyem = Fy with ¢ = p™.
Set B8 =Trr,e/r,(C) = ¢+ ¢!, Let H(z) = Irr (8, F,) be the irreducible
polynomial for 8 over F,. By using the multiplication table for 3 over F,
which can be obtained from that of ¢ over F,, we compute H(z). Then by
a change of variables of H(z) to H(z + k) if necessary, we get an irreducible
polynomial of the form either z* — atz? + bz + a or z° + uz® — tx + v. Then
by using the correspondences in Section 2, we obtain F(c, z).

Now we study examples. During the computations, N will always mean the
norm map from Fj to Fj,.

3.3.1. m = 2, p = 2 mod 13. Let { = (i3 be a primitive 13th root of
1. Note that 2 is a primitive root mod 13. Thus if p = 2 meod 13, then
Fp(¢) = Fpz = Fp with ¢ = p?. Let 8 = TTFQG/FQ:S(C) = ¢+ (7! and
w="Trg,/r,(B) = Trrq/r,(C). The multiplication table of { with respect to

the normal basis {(, Cp,cpz, . ,Cpn} over Fy, is

[0 1 0 0 0 0 0 0 0 0 0 07

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 g 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0
. 0 0 0 1 0 0 0 0 0 0 0 0 |

This table should be interpreted as (-{ = (?, (-(P = C”[L? and so on. Note that
B and w are normal elements for Fiz and Fy, respectively over F),. From the

above multiplication table of { over Fj,, we can read the multiplication tables
of 8 and w:

for 3,

-0 = O N

and
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Note that w +w? = Trr,/r, (W) = Trg ek, (() = -1, since Irr (¢, Fp) = &' +
z!l4...4z+1. From the multiplication table for w, we have w-w? = 3w+3w? =
3(w+wP)=-3. So
Ir(w, Fp)=(z—-w)(z—-wP)=z— (wt+wPlz+w -’ =22+ -3,
Now we compute
H(z) =Iir (B, F,) = (z = )& — A7) (e = B7)-
Clearly +84+7 = Trr,,/r,(8) = w, and B-B9+07-47 +4-B7 = Trr, /5, (B-
£39). And the multiplication table for 8 says 3-89 =" g = ﬂ”3 + /6”4. Thus
Trpy /5, (8- 89) = Trr,, /5, (B +B7) = w?’ +wP" =wP +w = —1. Finally, we
have §- 8964 = - (B-B7)7 = B- (87 + 87 )" = (B+ 7 + 6" )P —2(6+
ﬂ”+---+ﬁ”5) = P 4 2 = ] — . Therefore
H(z)=Trr (8, F) =2® —wz? ~z+w - 1.
Let us consider
Hz-1)=Irr(B+1,F) =2°— (w+3)z® + 2w+ Dz - 1.

Since ir(w+ 1, Fp) = (2 - 1))+ (z-1)-3=22-2-3, Nw+1) = -3.
Thus N(—-2(w + 1)) = (—2)2(—3). Note that this is not a square in F, if we
assume that p = 2 mod 3. Hence ¢t = —2(w + 1) is a quadratic nonresidue in
F, by Lemma 4. So H(z — 1) is of the form G(z) = &® + uz? — tx + v with
u=—(w+3),v=~1and t = -2(w + 1). Hence by Theorem 3, we get c =
oul® 4 _:“S‘f:f ), where  satisfies o® =t = —2(w + 1). From the equation
w? +w—3 =0, we have wifl—l = %w - 353; Therefore we obtain an irreducible
polynomial F(c,z) = 23 — ca? + c%z ~ 1 with ¢ = — & (8w +11) + & (5w — 13)a,
where a? = —2(w + 1).

3.3.2. m =3, p= 2 mod 19. Let { = {39 be a primitive 19th root of 1.
Then 2 is a primitive root mod 19, and so if p = 2 mod 19, then F,({) =
Fpis = Fye with ¢ =p>. Let 8 = 'I’rpqﬁ/pq3 )=C¢+¢ltandw= Trr,/p, (3).
As before, the multiplication tables of ¢, 8 and w with respect to the obvious
normal bases over Fj, are

for ¢,

OCOOcOQOLOOcoc@cco
|

CCCO DO NSO R DD .
{

cCocoODo0oO~RoDOocOoTSOS

D D DD DO e D e O D ID D DD
{

CCCoOOoORO~RODO0CCDOC D
}

D e D LD D D e DD DD
|

cCoo~OO0O0CORCODO00RC O
|

CC OO RO OO

CCCODRORRTDDOOOOTO
|

o g o B o e e B B e B we e B e B o e e
i

CROCoOLOO~OROOOOCT S

DD ODODE D DD DD DD
f

COCOOOLO~RooODROOO =S
|

R N N - - - -T-N-R-E-F-1
§

DV COD OO OODODODOOT

|
o oD O~ROCDOCRROO
]
WD D DD o e DD DDA OO
:

-

|
CCOODPOOFDIDODDDD
f
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-2 -1 -2 -2 -2 -2 -2 -2 -2
1 0 0 0 1 0 0 0 O
60 0 0 1 0 0 1 0
0 6 0 0 0 0 1 o0 1
61 1t 0 0 0 0 0 O for 3,
6 06 0 0 0 0 1 1 0
o 0 0 1 0 1 0 0 0
0 0 1 0 0 1 0 0 O

0 0 0 1 0 0 0 0 1|
and
-4 -5 —4
1 2 3 for w.
2 3 1

As in Example 2, from the multiplication table for w, we see that
It (w,F) =2° +2* — 62— 7.
Let
H(z) =Irr (8, Fy) = (¢ = A& = f7)(z — 7).

Since B+ 87+ 87 =Trp /5, (8) =w, B-f7+ 5287 + - 67 = (w?—5) and
ﬁ-ﬁq~ﬁq2 = 6 — w?, we have

H(z) =Irr (8, F)) = 2® —wa® + (w? = 5)z + w? — 6.

Note that NV (w;"_ﬁ) = N?L (2“’ 26) = 7, Thus if 7 is a quadratic nonresidue

mod p, then H(z) is of the form G(z) = z* — atz? + bz + a with a = w? — 6,
b=w? -5 and t = —#=. Therefore we get F(c,z) = &® — ca® + c%z — 1 with

— Awl-w-25 | H=w’+7) 24w 3002 6T —
¢= == 4+ =g —a, where o =t = —*. Since w” + w’ — 6w — 7 =0,
we have zi7 = w? — 6. Hence if (%) = —1, then we obtain an irreducible

polynomial F(c,z) with ¢ = (—20w? + 4w + 115) + 4(6w? — w — 35)cx, where
o =t=—r=wtw.
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