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QUADRATIC RESIDUE CODES OVER Zg

B1JAN TAERI

ABSTRACT. A subset of n tuples of elements of Zg is said to be a code
over Zg if it is a Zg-module. In this paper we consider an special family
of cyclic codes over Zg, namely quadratic residue codes. We define these
codes in term of their idempotent generators and show that these codes
also have many good properties which are analogous in many respects to
properties of quadratic residue codes over finite fields.

1. Introduction

Let R be a finite commutative ring with identity. A subset C of n tuples of
elements of R is called an R-code (code over R) if it is an R-module. Recall
that a code C over R is called cyclic if cyclic shift of every element of C is an
element of C, or equivalently C is an ideal of R[z]/(z" —1). Hammons, Kumar,
Calderbank, Sloane, and Solé in a seminal paper [3], discuss the Zs-linearity
of Kerdock, Preparata, Goethals, and other codes. The structure of cyclic Zy-
codes is considered by Pless and Qian [10], and Pless, Solé, and Qian [9]. They
found generator polynomials as well as idempotent generators for cyclic Zg-
codes. They have also outlined the necessary and sufficient conditions for these
codes to be self dual.

Ax interesting family of cyclic codes is quadratic residue codes. Quadratic
residue codes firstly defined and investigated by Andrew Gleason. The mini-
mum weights of many modest quadratic residue codes are quite high, making
this class of codes promising. Pless and Qian [10] defined quadratic residue
codes over Z4 in terms of their idempotent generators. They showed that
these codes have many good properties which are analogous in many respect to
properties of quadratic residue codes over finite fields. The same results were
obtained for quadratic residue codes over Zg (see [2]).

In this paper we consider Zg and define quadratic residue codes over Zg.
We prove that the results of [10] and [2] remain valid over Zg. Our method
suggests that if one has the idempotent generators of quadratic residue codes
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over Zgm, one can obtain idempotents over Zgm+1 and define quadratic residue
codes over Zgm+1. We show that these quadratic residue codes over Zy have
large automorphism group which will be useful in decoding these codes by using
the permutation decoding methods described in [5, Chapter 16]. We also define
a distance preserving map from Z{ (Lee distance) to Z4" (Hamming distance).

Our notation and terminology are standard and can be found in [5]. Throu-
ghout the paper we will assume that R is a finite commutative ring with iden-
tity. We begin with some elementary facts (see [2, pp. 14-15], where we can
replace Z,m by R).

Theorem 1. Let e1, ez be idempotents of R[z]/(z"™ — 1) and let C1 = (e1),
C2 = (e2). Then C; NCs and Cy + C2 have idempotent generators ejex and
e1 + e2 — eyea, respectively.

Theorem 2. Let ey(z) be the idempotent generator of an R-cyclic code C.
Then 1 — e(z~!) is the idempotent generator of the dual code C*. '

Recall that f,g € R[z] are called coprime if fu+gv = 1 for some u,v € R|z].
If z" — 1 = fg, where f and g are coprime, then it is easy to see that C' = (f)
in R[z]/(z™ — 1) has an idempotent generator, namely e = fu, which is the
identity of C so it is unique (see {2, Theorem 2.0.1]). Let e;, i = 1,2,...,r
be elements of R. If e;e; = 0 for all ¢ # j, and }.;_; e; = 1, we say that e;,
¢ =1,2,...,r are primitive idempotents. In this casé R is the direct sum of
minimal ideals Re;, i = 1,2,...,7 (see, for example, [6, p. 95]).

Theorem 3. Let S and R be finite commutative rings with identity and char-
acteristic ¢™ and ¢™*, respectively, where q is a prime. Let f : R — S be
an epimorphism, with ker f = ¢™R.
(a) If f(e) = ey is an idempotent of S. Then €? is an idempotent of R.
(b) If e;, i = 1,2,...,7 are primitive idempotents of S, and f(6;) = e;,
i=1,2,...,r, then 0], i=1,2,...,r, are primitive idempotents of R.

Proof. (a) Since e = e;, we have e — e € ker f. Thus e? — e = ¢™b; for some

b1 € R. Therefore, since q divides (?), 1 < ¢ < ¢ — 1, and ¢g™*! > ¢™*,
g™ > q™*!, we have

e = (e+q™h)?

g—1
= e Y (Yerigm + @
i=1
g—1
= e?+ Z n;qq™e?'b¢ + ¢™{ (n; € N)

=1

= 4.
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(b) In S we have 377 e; =1 and e;e; = 0,4 # j. Thus 3i_, 8; = 1+ ¢"ao
and 6;6; = ¢™by for some ag,by € R. Now

r q r
(Z‘*‘) =Y 6 +aqu,
i=1 i=1
where u is the sum of terms containing a factor of the form 0;0;. Thus, in R,

Zef = (1+q™ag)?~q™ ey (where ¢o € R)

1+Z(> (¢™ao)’

1+ Z nigg™ay (where n; € N)

=1
= 1 (since g™t > g™,
Finally 6767 = (0:6,)? = (¢™bo)? = ¢™b§ = 0, since g™ > g™ . O

Let Rj, j = 1,2,...,m + 1 be finite commutative rings with identity and
characteristic ¢7, where g is prime. Let fi t Rjyi — R;, j = 1,2,...,m,
be epimorphisms, with ker f; = ¢/ R;+1. Suppose that e; is an idempotent of
Ry. Since f; is epimorphism, there exists e in Ry such that fi(es) = e;. By
Theorem 3, el is an idempotent of R;. Now since fo is epimorphism, there
exists e in R3 such that f(es) = e;. Thus fo(e?) = el is an idempotent of

2
Rs. So, by Theorem 3, e} is an idempotent of R3. Continuing in this way we
obtain elements e, e3,. .., emy1 such that fi(ej+1) = e; such that eg.;l is an
idempotent of R;. In particular eg::rl is an idempotent of R,

Now suppose that fi(e12) = e11, fi(ea2) = e, ..., fi(era) = e,1 are prim-
itive elements of R;. Then, by Theorem 3, efy,el,, ..., e, are primitive ele-
ments of Ry. Now there exist elements e;3, i = 1,2,...,7, such that fa(e;3) =
eia. Thus fa(ely) = ek, i = 1,2,...,r, are primitive elements of R, and so,

2
by Theorem 3, el,, ¢ = 1,2,...,r are primitive elements of R3. Continu-
ing in this way we obtain elements e1;,eg;,...,erms1 such that f(e; j11) =
€ij and e¥ L +1,eg L .,egjj +1 are primitive elements of R;. In particular
e1 M1 €3 s er m41 are primitive elements of R,,

Let p and ¢ be primes and m a positive integer. Put R, = Zgm [x]/{zP — 1).

The epimorphism
fm . qu+1 — qu
at(¢") = a+(g™)
can be extended to an epimorphism R,,.; — R,,, which is again denoted by
fm. Thusif e € Ry, is an idempotent of R,, and viewed as an element of R, 1,
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then e? is an idempotent of R,,11. In this paper we deal with some special
idempotents of Zg[z}/(z? — 1), so if e is an idempotent of Zz[z]/{(z? — 1), then
by Theorem 3, 3 is an idempotent of Zg[x]/(zP — 1).

Let @ be the set of quadratic residues and N be the set of non-residues
for p (a prime). Let e1 = 3", o' and ez = 3,y z'. By [5, Problem (25),
p. 520], 3 is quadratic residue (mod p) if and only if p = 12r + 1. Therefore
for considering quadratic residue codes over Zs (and hence over Zgm) we must
assume that p = 12r £ 1. It is well known 2e;, 1 +¢;, i = 1, 2, are idempotents
of Zs[x]/(xP — 1) (see [5, p. 486]). A Zs-cyclic code is a Zs-quadratic residue
(QR) code if it is generated by one of the idempotents 2e;, 1 +¢;, ¢ = 1,2. If
p=12r — 1 put Q; = (2e1), Q2 = (2e2), Q) = (1+e2) and Qy = (1 +ey). If
p=12r+1put @ = <1+62), Q2= <1+61>, Qll = (261) and QI2 = (262>' Now,
as we have seen, (2¢;)%, (1+¢;)3, i = 1,2, are idempotents over Zg[z]/{z? — 1).
In order to define quadratic residue codes over Zg in terms of idempotent
generators, we must compute these elements modulo 9. The following theorem
is needed for such computations.

Theorem 4 ([7], or [5, p. 519]). (i) Suppose that p = 4k —1 and a is a number
prime to p. Then in the set a+ (QU{0}), there are k elements in QU {0} and
k elements in N. In the set a + N, there are k elements in QU {0} and k — 1
elements in N.

(i1} Suppose that p =4k + 1 and a is a number prime to p. Then in the set
a+ (QU{0}), ifa € Q, there are k + 1 elements in Q U {0} (including 0) and
k elements in N; and if a € N, there are k elements in Q and k+ 1 elements
in N. In the set a+ N, if a € Q, there are k elements in Q and k elements in
N; and if a € N, there are k + 1 elements in Q U {0} (including 0) and k — 1
elements in N.

By a routine application of Theorem 4, we obtain the following result.
Theorem 5. If p =4k — 1, then
el = (k- 1)ey + keg,
e3 = ke1 + (k — 1)eq,
ereg = (2k — 1)+ (k — 1)es + (k — 1)eq.
Ifp=4k+1, then
e = (k — 1)e; + kes + 2k,
e2 = ke; + (k — )ea + 2k,
ei1ex = key + kes.

By the above theorem and a little computations, when p = 4k — 1 we have
e? = (3k® — 3k + 1)e1 + 2k(k — 1)ea + 2k* — k,
es = 2k(k — 1)ey + (3k% — 3k + 1)ex + 2k% — k,
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and when p = 4k + 1 we have
€3 = (2k? + 1)ey + (2k% — k)ey + 2k% — 2k,
€3 = (2k? — k)ey + (2k% + 1)eqs + 2k* — 2k.

2. Quadratic residue codes over Zg

Throughout the paper we assume that p is a prime and h = 1+ €1 + €
is the all one vector. As mentioned in introduction, for considering quadratic
residue codes over Zs we must assume that p = 12r £ 1. First of all we find
idempotents of Zg[z]/(z? — 1) from idempotent generators of quadratic residue
codes over Zslx]/{z? — 1).

Theorem 6. 1. Suppose that p = 12r — 1.
(a) Ifr = 3k, then 8e;, 1+e;, 8h, 1+2h are idempotents over Zg/(z? — 1),
where i = 1,2,
(b) Ifr = 3k+1, then 3+6e;+8e;, 7T+e;+3e;, 5h, 1+ 5h are idempotents
over Zg/(zP? — 1), where 1 < i # j <2.
(¢) Ifr = 3k+2, then 6+ 3e;+8e;, 4+e;+6e;, 2h, 84 8h are idempotents
over Zg/(xP — 1), where 1 <i#j <2.
II. Letp=12r+1.
(a) If r = 3k, then 1 +e;, 8e;, h, 1+ h are idempotents over Zg/(zP — 1),
where 1 =1,2.
(b) Ifr = 3k+1, then 4+e;+6e;, 6+3e;+8e;, Th, 142h are idempotents
over Zg/{zP — 1), where 1 <i# j <2.
(c) If r = 3k+2, then T+e;+3e;, 3+6¢;+8e;, 4h, 14 5h are idempotents
over Zo/{(xP — 1), where 1 < i # j < 2.

Proof. 1. Let p=12r—1. Since 2e, is an idempotent of Zs[z]/(z? — 1), (2e1)*
is an idempotent Zg[z]/{z? — 1). By Theorem 5, in Zg[z]/(z? — 1) we have
(2e1)® = 8¢}
—[(18r% — 9r + 1)e; + 67(3r — 1)eg + 18r% — 3]
= 3r+ 8e; +Gres
ey r=3k

= 3 4 8¢y + bey r=3k+1
6 + 8e; + 3eq r =3k + 2.

i

Similarly,

(1+e)® = 1+3e;+3e2+¢}
1+ 3e; + 3[(3r — L)e; + 3rez] + [ey — 6rea — 3]
= 1-3r+e —6bre

1+e r =3k

T+ e1 4+ ez r=3k+1
4+ e + 6ey r=3k+ 2.

i

]
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Other cases are proved similarly. d

A Zg-cyclic code is called a Zg-quadratic residue (QR) code if it is generated
by one of the idempotents in the above theorem. Let ¢ be a nonzero element
of Z,. The map p, is defined as p.(i) = ai (mod p). It is easy to see that
te(f9) = pa(f)ta(g) for polynomials f and g in Zg[z]/{(z? —1). In the following
theorem we investigate some properties of QR-codes over Zg.

Theorem 7. Suppose that p = 12r — 1. If r = 3k, let Q1 = (8e1), Q2 = (8e2)
and Q1 = (1+e2), Qs =(1+e). Ifr=3k+1, let Q1 = (3+ 6e1 + 8ea),
Q2 = <3+861+6€2> and Qi == <7+€1+362>, Q'z = (7+361+62). Ifr =3k+2,
let Q1 = (6 + 3e1 + 8es), Q2 = (6 + 8e; + 3ez) and Qll = (4 + e + 662>,
Q) = {4+ 6e1 + e2). Then the following hold for Ze-QR codes Q1, Q2, @},
Qs
(a) @1 and Q2 are equivalent and Q' and Q% are equivalent,
() Q1N Q2 = (h) and Q1 + Qo = Zolz]/(xP — 1), where h is a suitable
element in {8h,5h,2h} lisied in the Theorem 6;
© Qi =9"+2 = Qo
(d) Q1 =Q1+(h), Q2= Q%+ (h);
(e) 1@y =9®=1/2 = |Q4);
(f) Q) and Q% are self-orthogonal and Qi = Q) and QF = Q5;
(8) @ NQs = {0} and @ + Q4 = (1 - h); also Qi N Q; = {0} and
Q) + Q) = Zolx]/(xP — 1), where 1 <i# j < 2.

Proof. Since p = 4(3r) — 1, —1 € N, by [8, Theorem 65]. We prove the case
r = 3k + 2. The proof of other cases are similar.
(a) Let o be an element of N. Then pge; = e2 and pge; = e;. Thus
La(6 + 3e1 + 8ez) = (6 + 8ey + 3ea) and g {4 + 6e; + e2) = (4 + e1 + be2).
(b) Since (6 + 3e1 + 8e2) + (6 + 8e; -+ 3e2) = 1+ 2h, we have
(6 + 3e; + 8e2)(5h)
= (64 3e1 + 8e2)[8+ (6 + 3e1 + 8ez2) + (6 + 8e1 + 3e2))
= 8(6+ 3e; + 8ez) + (6 + 3e; + 8e2)? + (6 + 3e1 + 8e2)(6 + 8y + 3e2)
(6 + 3e1 + 8e2)(6 + 8e1 + 3ez).

Now since p = 12(3k + 2) — 1 = 36k + 23 and 25* =2 mod 9, we have
— — -1
(6+3e1 +8e3)(2h) = 6(2h)+3pTl(2h)+8pTl(2h) - (6+2P——§—)(2h) = 2h.

Therefore (6 + 3e; + 8e2)(6 + 8e; + 3e2) = 2h. By Theorem 1, Q1 N Q2 has
idempotent generator 2h. Hence

Q1 N Q2| =|(2h)| = 9.
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Also, by Theorem 1, Q1 + Q3 has idempotent generator
(6 + 3e1 + 8e2) + (6 + 8ey + 3e2) — (6 + 3eq1 + 8ez)(6 + 8ey + 3ey)
=3+ 2 +2e3 — (24 2ey +2ep) = 1.
Thus @, + Qs = Zola]/(a” — 1),
(c) By (a) and (b) we have
|Q1]1Q2] _ @1

9 =1+ Q2 = Q:inQal 9

50 [Q1] = |Q2] = 9D/,
(d) By Theorem 1, @) N (2h) has idempotent generator

(4+ 6ey + e2)(2h) = 4(2h) + 61%1(2};) + p—;—l(Zh) =+ 7”—;—1)(%) =0.

Thus Q) N (2h) = {0}. By Theorem 1, Q) + (2h) has idempotent generator
(4+6e; +e2) + 2h — (4 + 6e1 + e2)(2h) = 6 + 8ey + 3ez. Hence

Q,l + <2h> = <6 + 861 + 3€2> = Q}.

Similarly Q5 + (2k) = Q2.

(e) 9PH V72 = 1Qq| = Q1 +(2h)| = Q1 |(2h)| = 9@ Thus |Q}] = 9~ 1/2,

(f) By Theorem 2 and the fact that —1 € N, Q1 has idempotent generator

1- {6 4 36](117_1) + 862(33-1)} = 4 + 661(23_1) + 62(&?_1) =4 4 e + Geq.
Hence Q1 = Q4. Similarly QF = Q). By (d), Q1 € Q= Qf and @, C Q} =
Q4+, so @1 and Q5 are self-orthogonal.

(g) Since (4 + €1 + 6ea) + (4 + 6e1 + e2) = 1 + Th, we have

(4 + eq -+ 682)(7h)
(4+e1+6e2)[8+ (4+ ey + 6ea) + (4 + 6eq + e2)]
= 8(4+e1+6ex)+(4+e;+6e2)’ + (4+e1 +6e2)(4+6er +ez)
= (4+e;+6e2)(4+ 6e; +ez).
Now since % = 2 mod 9, we have

-1 -1 -1
(4+ ey +6e2)(Th) = 4(Th) + p—z—(m) + 62— (7h) = (4 + 7”T )(2h) = 0.
Therefore (6 + 3e; + 8e2)(6 + 8e; + 3e3) = 0. By Theorem 1, @} N Q% = {0},
and Q] + Q% has idempotent generator (4 +e; + 6ez) + (4 +6e; +e2) = 1+ 7h,
50 Q1+ Q5= (1+7h). O

Theorem 8. Let p = 12r + 1 be a prime. If r = 3k, let Q1 = (1 + e1),
Qg = <1+82> and Qll = <8€2>, Q’2 = (881). If’f‘ = 3k+1, leth = (4+€1+662>,
Q2 = (44+6e1+e2) and Q) = (6+3e1+8e2), Q5 = (6+8e1+3e2). Ifr = 3k+2,
let Q1 = (T+ e+ 3ez), @1 = (7T+ 3ex +e1) and Q) = (3 + 6e; + 8ey),

5 = (34 8¢y + 6ey). Then the following hold for Zg-QR codes Q1, Q2, @,
Qs
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(a) Q1 and Q2 are equivalent and Q) and Q% are equivalent:

(b) Q1N Q2 = (h) and Q; + Q2 = Zo|z)/(zP — 1), where h is a suitable
element in {h,4h,7h} listed in the Theorem 6;

() 1Q1] = 9@+1/2 = |Qg); N

(d) @i =@1 +(h), Q2= Q3 + (h);

(e) 1Q1] =9%~172 = |y i

() Qi = Q% and Q3 = Q; -

(8) QNQ5 = {0} and @ +Qp = (1 — ) also QN Q; = {0} and
Qi+ Q) = (u), where 1 < i # j < 2, and u is a sustable element of
{1+ 2h,1+5h,1+ h} listed in the Theorem. 6.

Proof. We prove the case r = 3k + 1. The proof of other cases are similar.
(a) Let a be an element of N. Then use; = ez and pges = e;. Thus
Ba(d+ 6e1 +e2) = (4 + ey + 6e2) and o (3 + 8e; + 6eg) = (3 + 6e; + 8ez).
(b) Since (4 + 6e1 + e2) + (4 + e1 + 6e2) = 1 + Th, we have
{4+ 6e1 + 62)(7h)
(4+ 6e1 + €2)[8 + (4 + 6ey + e2) + (4 + €1 + 6e2)]
8(4 4 6e1 + e2) + (4 + 6ey + e2) 4 (4 + 6e1 + €2)(4 + €1 + 6ea)
(4 +6e1 +e2)(4 + e1 + 6es).

i

Now since p = 12(3k + 1) + 1 = 36k + 13 and Z5* = 6 mod 9, we have

(4+ 6e; + e2)(Th) = 4(Th) + 62—~ (7h)+—(7h) a+72== )(7h)—7h

Therefore (4 + 6e; + e2)(4 + e1 + 6e2) = Th. By Theorem 1, Q1 N Q2 has
idempotent generator 7Th. Hence

Q1 N Q2| = [(Th)| = 9.
Also, by Theorem 1, @y + Q2 has idempotent generator
(4+6e1+e2) + (4 + e1 +6e3) — (4+ 6e1 +e2)(4+ e1 + 6es)
= 8+7e1+762—(7+761 +7€2) = 1.

Thus Q1 + Q2 = Zo[z]/(z? — 1).
(c) By (a) and (b) we have

@]1@2f _ |@if?
Q1N Qs 9’

P =|Q1+Q:2 =

50 |Q1] = |Q2| = 9P+D/2,
(d) By Theorem 1, @} N (7h) has idempotent generator

(6+3e1+8e2)(7h)—6(7h)+3-—(7h)+8 (7h) 6+22== )(7h)—0
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Thus Q7 N (7h) = {0}. By Theorem 1, Q] + (7h) has idempotent generator
(6 + 3e1 + 8ey) + Th — (6 + 3e1 + 8e)(Th) = 4 + €7 + 6. Hence
Q1+ (Thy = (4+ e, +6e2) = Q1.
Similarly Q) + (7h) = Qa.
() 9PHN2 = Q| = |Q+(Th)| = |Q1]|(Th)| = 9@} | Thus |Q}| = 9=172,
(f) By Theorem 2 and the fact that —1 € Q, @ has idempotent generator
1—[d+e(z™) +6ea(z™!)] =6 +8er(z ) + 3ex(z™!) = 6 + 8eq + 3ea.
Hence Q7 = Q5.
(g) Since (6 + 3e; + 8e2) + (6 + 8e; + 3ey) = 1 + 2k, we have
(6 + 3e1 + 8ez)(2h)
(6 + 3e1 + 8e2)[8 4 (6 + 3e1 + 8ez) + (6 + 8ey + 3ez)]
8(6 + 3e1 + 8e2) + (6 + 3ey + 8eq)? + (6 + 3e1 + 8e2)(6 + 8ey + 3ez)
(6 + 3e1 + 8e2)(6 + 8e1 + 3ez).

i

Now since 2;—1 = 6 mod 9, we have
_ -1 -1
(6+3e1 +8ey)(2h) = 6(2h)+3p71(2h)+8?2—(2h) = (6+11p—2—)(2h) =0.

Therefore (6+3e;+8e2)(6+8e1 +3ez) = 0. By Theorem 1, Q1NQ%5 = {0}, and
Q1+ Q% has idempotent generator (6+3e; +8e2)+ (6+8e;1+3eg) = 1+2h. O

The extended code of an R code C will be denoted by C, which is the code
obtained by adding an overall parity check to each codeword of C.

Theorem 9. _Supposg_ p=12r — 1 and Q1, Q2 are the Zg-QR codes in Theo-
rem 7. Then Q, and (), are self-dual.

Proof. We prove the case p = 3k + 2. The proof of other cases are similar.
We know, by Theorem 7, that (1 = @} + (2h), and ¢}, has the 3—’42'—1 x (p+1)
generator matrix

o 01 2 ... p-1
0

0 e 7
8 2 2 2 ... 2

where each row of G is a cyclic shift of the vector 4 + e; + 6e5. We know that
G generates Q. Since Q) is self-orthogonal (Theorem 7(f)), the rows of G
are orthogonal to each other and obviously also orthogonal to 2h. Since the
vector (8,2h) is orthogonal to itself and |Q,| = |Q;| = 9%+1)/2, by comparing

the order of @, and Q—f, @, is self-dual. Similarly, @, is self-dual. O
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When p = 12r + 1, we define Ql to be the Zg-code generated by the matrix

co 01 2 ... p-—-1
0

0 e ,
1 11 1 1

where each row of G| is a cyclic shift of 8e; when r = 3%k, a cyclic shift of
6+ 3e; + 8eo when r = 3k + 1, a cyclic shift of 3 4 6e; + 8e, when r = 3k + 2.
We define Q> similarly. Note that these are not extended codes of Q; and Q,
since the sum of the components of the all one vector is not 0 (mod 9).

Theorem 10. Suppose p = 12r + 1 and @1, Q2 are the Lgy- QR codes in
Theorem 8. Then the dual of Q, is Q2 and the dual of Qy is Qs

Proof. We prove the case p = 3k + 2. The proof of other cases are similar.
In this case, since Q1 = Q] + (4h) (Theorem 8(d)), @, has the 2! x (p + 1)
generator matrix

oo 01 2 ... p-—-1
0
0 G

8 4 4 4 ... (4

where each row of G} is a cyclic shift of the vector 3 + 6e; + 8e2. Since G}
generates Q7 and Q3 = @, by Theorem 8(f), any row in the above matrix is
orthogonal to any row in the matrix which defines Qz By companng the order
of the dual of Q; and the order of Q», we find that Q1 = Q. O

For p = 12r £ 1, the extended codes @, and Q, are equivalent, since Q;

. . Y paun
and ()2 are equivalent. They are also equivalent to Qll and (), . Therefore
the group of extended codes, which will investigated in the next sectlon, is the
group of either one of the extended codes.

3. Extended quadratic residue codes over Zq
Let a € Q. Define permutations o and y, on {0,0,1,...,p— 1} by
o:irmi+1modp, oo o0
Ho it ai mod p, 00 00.

Clearly, the extended QR-codes are fixed by o and p,. So the group generated
by o and p,, @ € @, is contained in the group of extended QR-codes. Let x be
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the Legendre symbol on GF(p) which is defined by

1 1€Q
x(@) =< -1 i€N
0 otherwise.

Now we define a permutation p on extended quadratic residue codes as follows:
1 .
pii— —3 mod p, followed by multiplication by — x(¢),

that is, p: 2 — —x(i)z~/*, and when p = 12r — 1,

7 = 3k oo > 0 followed by multiplication by 8
r =3k 00— 0 followed by multiplication by 1
r=3k+1 0o > 0 followed by multiplication by 7
r=3k+1 01— o0 followed by multiplication by 2
ro=3k-+2 oo+ 0 followed by multiplication by 4
r=3k+2 00— o0 followed by multiplication by 5,
and when p = 12r + 1, '
r =3k oo+ 0 followed by multiplication by 1
r =3k 0 o0 followed by multiplication by 8
r=3k+1 0o+ 0 followed by multiplication by 4
r=3k+1 04— oo followed by multiplication by 5
r=3k+2 oo+ 0 followed by multiplication by 7

=3k +2 0+ 00 followed by multiplication by 2.

Let G be the group generated by elements o, p, tq, o € (. Note that when
p=12r -1, G/(£I) ~ PSLy(p), and when p = 12r — 1, G =~ PSLs(p). In the
following theorem we prove that G is contained in the group of the extended
@ R-code.

Theorem 11. Let G be as above. Then G is contained in the group of the
extended QQR-code.

Proof. Suppose that p=12r — 1 and 7 = 3k + 1.

Since p = 4(3r) — 1, —1 € N, by [8, Theorem 65]. Since Q1 = Q} + (5h),
(Theorem 7(d)), the extended code @, is generated by E;—l rows of the (p +
1) x (p + 1) matrix

To 0
0 G,
Too \8 5 3 5 - &

where each row of G is a cyclic shift of the vector 7+ ey + 3es. Since ~1isa
nonresidue, p(e1) = —ey and p(ez) = €.
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By definition of p we have x° - 2o, and Zo, — 5z°. Now g = (0,7 +e1 +
3e2) and so

p(ro) = (2-7,5-0 — ez + 3e1) = (5,3e1 + 8ez) = Tro + 5h € @,

where h is the all one vector of length p + 1, i.e., h = (1,1 + e; + e2). Since
Too = (8,5 + be; + Hez), we have p(re) = (25,7 -8 — bez + 5e1) = (1,2 +
5e; 4+ 4eg) = 4o + h € Q,. Now we prove that p(rs) € @,. In all the following
proofs we let ¢ € @ and n € N. We have

e o= (0,72°+ Y et 433 am)
r-1/s = (0, (AR RS DY xn—l/s) .

We consider two cases s € Q and s € N:

Case 1. s € Q. We have p(rs) = (2-3, =Tx(s)z~1/* =3 x(g+s)z~1/(a+9) —
3Y x(n+ s)z~1/(*+8)), Since —1 € N and s € Q, 0 € s+ N, the oo position
of p(rs) is 2 -3 = 6. We show that p(rs) = 8r_y/, + Tro + 3ree. Since —1€ N
and s € Q, the nonresidue position of p(rs) +r_y/s is:

q+s€Q n+s€Q
+7l‘—1/s + Z xq—-l/s +3 Z xn—-l/s.
g—1/seN n—1/seN

By Theorem 4, the set s+ @ has 3r — 1 elements in @, 37 elements in N. Thus,
since —1 € N, the set {—1/(g+ s)} has 3r — 1 elements in N and 3r elements
in Q. Similarly the set {—1/(n+ s),n + s # 0} has 3r — 1 elements in N and
3r — 1 elements in Q; the set —1/s+ @ has 3r — 1 elements in N and 3r — 1
elements in @Q, and one element is 0; the set —1/s+ N has 3r — 1 elements in
N and 3r elements in Q.

Also since for any —1/(q + s) € N, there is a ¢’ € @ such that —1/(¢g +
s) = ¢ — 1/s and for any —1/(n + s) € N, there is a n’ € N such that
—1/(n+ s) =n' — 1/s, the nonresidue position is equal to

_ Z xq'—l/s_3 Z $n’_1/5+ Z 29~ 1/543 Z Zn—1/s = .
g’'~1/s€N . n'—1/s€N g—1/seN n—1/s€N
Now the residue position of p(rs) +r_1/; is:
Z x—-—l/(q-f—s) +3 Z w—l/('n—f—s) + Z xq—l/s +3 Z xn——l/s_
g+seN n+seN g—1/3€Q n—1/s€Q

Since for any —1/(g+s) € @, there is an’ € N such that —1/(g+s) =n'—1/s
and for any —1/(n+s) € Q, there is a ¢’ € Q such that —1/(n+s) =¢' —1/s,
there are 3r + 3r — 1 = 6r — 1 terms appearing, so the residue position is equal
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to
YooalVegs Yo gvMep N g4y Y 2" =der
n'—1/s€Q q'—1/s€Q q—1/s€Q n—1/s€Q
Thus, since 0 € —1/5 + Q, we have
p(rs) +r_1/s = (6,1 +4de1) = Trg + 3reo;
that is, p(rs) = 8r_y/s + Tro + 5h.

Case 2. s € N. We have p(r;) = (21, =7x(s)z~V/* =3 x(g+s)z~ /(@) —
33 x(n+ s)x=1/("t9)), Since 0 € s + Q, the oo position of p(rs) is 2-1 = 2.
We show that p(rs) = 7_1/5 + 7ro + 3h. Since —1 € N and s € N, the residue
position of p(rs) —r_y/, is

737"1/5—{- Z x-lv/(q+s)+3 Z x-l/(n+s)

g+seEN n+s€Q
- Z xq——l/s +3 z mn—l/s
g—1/3€Q n—-1/s€Q

By Theorem 4, the set s + @ has 3r — 1 elements in @, 3r — 1 elements in N
and one element is 0. Thus the set {—1/(g+s),g+ s # 0} has 3r — 1 elements
in N and 3r — 1 elements in Q. Similarly the set {—1/(n+ s)} has 3r elements
in N and 3r — 1 elements in Q; the set —1/s + @ has 3r elements in N and
3r — 1 elements in Q); the set —1/5+ N has 3r — 1 elements in N and 3r — 1
elements in (), and one element is 0.

Also since for any —1/(g+ s) € @, there is a ¢’ € Q such that —1/(¢ +
8) = ¢' — 1/s and for any —1/(n + s) € Q, there is a n’ € N such that
—1/(n+ s) =n’ —1/s, the nonresidue position is equal to

Z mq'—l/s +3 Z wn'—l/s . Z xq-—l/s -3 Z xn-l/s = (),
¢ ~1/s€Q n'—1/s€Q q—1/5€Q n-1/5€Q

Now the nonresidue position of p(rs) —r_; /s is:

- Z g~ ets) g Z g1/ (nts) Z 23748 4 3 Z Zh /s

g+seQ n+s€Q g—1/s€EN n—1/s€N

Since for any —1/(g+s) € N, thereisan’ € N such that —1/(g+s) =n'—1/s
and for any —1/(n+s) € N, there is a ¢’ € Q such that ~1/(n+s) =¢ —1/s,
and there are 3r + 3r — 1 = 6r — 1 terms appearing, so the residue position is
equal to —4es = Sez. Thus, since § € —1/s+ N, we have

p(rs) = T_1/s = (2,6 + 5e1) = Tro + 2h;
that is, p(rs) =T_1/s +Trg +2h € 61.



26 BIJAN TAERI

By similar proofs, we obtain the following results:
When r = 3k,

ro =(0,1+e2), p(ro) =8ro+h, plrs) = 8r_1/s +7T0, SE Q,
p(rs) =7_1/s+8m0, SEN, p(re)=2ro+8h.
When r = 3k + 2,
ro = (0,4 + e1 + 6e3), p(ro) = 4ro + 2h, p(rs) =8r_q/s +4ro+3h, s€Q,
p(rs) =r_1/s +4ro +5h, sE€N, p(reo) =10+ h.

Now suppose that p = 12r + 1 and » = 3k + 1. Since @1 = Q) + (7h)
(Theorem 8(d)), the extended code @, is generated by 242'—1 rows of the (p +
1) x (p + 1) matrix

To 0
0 G
Too \8 7 7 7 -+ 7

where each row of G} is a cyclic shift of the vector 6 + 3e; + 8e2. Since
p = 4(3r) + 1, —1 is a residue mod p, by [8, Theorem 65]. Thus p(e1) = —es
and p(ez) = ea.

By definition of p we have z° — 5z, and o, — 42°. Now ro = (0,6+ 3e; +
8e2) and so

p(ro) = (5-6,4-0 — 3e; + 8ez) = (3,6e; + 8ez) = 4rg + 5h € Q.

Since Teo = (8,7 + Tey + Tes) we have p(reo) = (5-7,4-8 — Tex + Tez) =
(8,5 4 2e1 + Tea) = ro + 8h € Q;. Now we prove that p(r;) € @;. In all the
following proofs we let ¢ € Q and n € N. We have

= (0, 6x° + 329:‘1“ + 82:6”“) ,

r-1/s = (0, 61/ + 3qu—1/s + SZx"‘1/3> .

We consider two cases s € Q and s € N:

Case 1. s € Q. We have p(rs) = (5-3, ~6x(s)z~/°—3 3 x(g+s)z~1/(a+e) —
83 x(n + s)z~(™+9)), Since 0 € s + Q, the oo position of p(rs) is 5-3 = 6.
We show that p(r,) = 8r_y/s +4rg +6h. Since —1 € Q and s € @, the residue
position of p(rs) +r_1/, is:

G153 Y gVt _g T g1/
g+s€EQ n+s€Q

_+_6x-—1/s +3 Z z-1/s +8 Z =1,
q—1/s5€Q n—1/s€Q
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By Theorem 4, the set s + @ has 3r ~ 1 elements in @, 3r elements in N, and
one element is 0. Thus, since —1 € Q, the set {—1/(g¢+s),g+s # 0} has 3r—1
elements in @ and 3r elements in N. Similarly the set {—1/(n + s)} has 3r
elements in @ and 3r elements in N; the set —1/5+Q has 3r — 1 elements in @
and 3r elements in N, and one element is 0; the set —1/s+ N has 3r elements
in @ and 3r elements in €.

Also since for any —1/(q + s) € Q, there is a ¢ € Q such that —1/(g +
s} = ¢ —1/s and for any —1/(n + s) € Q, there is a n’ € N such that
=1/(n+ s) = n’ — 1/s, the nonresidue position is equal to

-3 Z IL'ql_l/s——S Z xn’—l/s

q'~1/s€Q n' —1/s€Q
+3 Y 2V Y V=0
q~1/3€Q n-1/s€Q

Now the nonresidue position of p(rs) +7_1 s is:

3 Z o Vas) 4 g Z = (nts)

g+seN n+seN
43 Y wips 3 et
g—-1/s€N n—1/seN

Since for any —1/(q+s) € N, there is an’ € N such that —1/(g+s)=n'—1/s
and for any —1/(n+s) € N, thereis a ¢’ € @ such that —1/(n+s) =¢' —1/s,
and there are 3r + 3r = 6r terms appearing, so the residue position is equal to

30) gl Meyg By gl

q'~1/s€N n'—1/s€N

+3 Z i1/ 48 Z 25 = 2e,.
g-1/seN n—1/3¢N

Thus, since the 0 € —1/s+ Q, we have
plrs) +1_17s = (6,3 + 2e1) = drg + 6h;
that is, p(rs) = 8r_y/s + 4rg + 6h.

Case 2. s € N. We have p(r) = (58, ~6x(s)z=/* =3 x(g+s)z~ /(%) —
83 x(n + s)z=1/(+2)). Since 0 € s + N, the oo position of p(r;) is 5-8 = 4.
We show that p(rs) = r_/,+4ro+4h. Since —1 € Q and s € N, the nonresidue
position of p(rg) —r_y/, is:

6=/ +3 Z g Vats) 4 g Z p— Y/ nts)

q+sEN n+seN

— |6z Y5 +3 Z 24V 48 Z e
g—1/seN n—1/seN
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Since —1 € @, by Theorem 4 the set {—1/(q + s)} has 3r elements in Q and
3r elements in N. Similarly, the set {—1/(n + s),n + s # 0} has 3r elements
in Q and 3r — 1 elements in N; the set —1/s + @ has 3r elements in Q and 3r
elements in N; the set —1/s+ N has 3r elements in @ and 3r — 1 elements in
N, and one element is 0.

Also since for any —1/(g+ s) € N, there is a ¢’ € Q such that —1/(g +
8) = ¢ — 1/s and for any —1/(n + s) € N, there is a n’ € N such that
—1/(n+ s) =n' — 1/s, the nonresidue position is 0.

The residue position of p(r;) —r_1/, is:

—3 Y gt _g 3T g1/

g+s€Q n+-s€Q
— |3 Z z.q—-l/s_,_s Z xn—l/s
g—1/5€Q n—1/s3€Q

Since for any —1/(q+s) € Q, thereis an’ € N such that —1/(g+s) =n'~1/s
and for any —1/(n+s) € Q, thereis a ¢’ € Q such that —1/(n+s) =¢ —1/s,
there are 3r + 3r = 6r terms appearing, so the residue position is equal to
—lle; = Te;. Thussince 0 € —1/s+ N, p(rs) —7_1/s = (4,1+Tey) = dro+4h;
that is, p(rs) =7_1/s + 410 + 4h € Q.
By similar proofs, we obtain the following results: When r = 3k + 1,

o = (0,6 + 3e1 + 8ez), p(ro) = 4ro + 5h, p(rs) = 8r_1/s + 4ro + 6h, s € Q,

p(rs) =r_1/s +4rog+4h, s€N, p(re) =10+ 8h.
When r = 3k,

ro = (0,8e2), p(ro) = ro, p(rs) = 8"‘—l/s +70, S€Q,
p(rs) =r_1/s+ 710+ 87, SEN, p(re)=8rco.

When r = 3k + 2,
ro = (0,3 + 6e1 + 8ez), p(ro) = Tro + 6h, p(rs) = 8r_1/s + Tro + 3ree, $ € Q,
p(rs) =7r_1/s+Tro+Th, s€ N, p(re)=4ro+8h. 0

Recall that the Lee weight of a € Z,, is defined as min{a,m — a}, and the
Lee wight of a vector is the sum of the Lee wight of its components. Thus in
Zyg, the Lee wight of 0 is 0; the Lee wight of 1,8 is 1; the Lee wight of 2,7 is 2;
the Lee wight of 3,6 is 3 and the Lee wight of 4,5 is 4. The Euclidian weight
of a € Zy, is defined as the square of the Lee wight of a, i.e., (min{a,m — a})?;
and the Euclidian weight of a vector is the sum of the Euclidian wight of its
components. By direct computation with the aid of a computer, we have

Theorem 12. The Zg-QR code of length 11 has minimum Lee weight 7, min-
imum Euclidian weight 9, and minimum Hamming weight 5.



QUADRATIC RESIDUE CODES 29

We define the maps 8;, i = 1,2, 3,4, from Zg to Z2, by

¢ | Bile) Bale) Bale) Bale)
01}0 0 0 0
110 0 0 1
20 0 1 1
310 1 1 1
411 1 1 1
5|1 1 1 1
6|1 1 1 0
711 1 0 0
811 0 0 0

The map §; can be extended on N-tuples which is also denoted by ;. The Gray
map ¢ : 2 — Z§" is given by ¢(c) = (Bi(c), Ba(c), Ba(c), Ba(c)). Clearly
¢ is a distance-preserving map from (Z{, Lee distance) to (Z3", Hamming
distance). The weight distribution of the image of the QR-code of length 11
under the Gray map is given in the following table;

1 A; i A

0 1 24 51700
7,8,42 22 25 45232
9,39 110 26 39292
10 220 27 47102
11 112 28 38632
12 550 29 24618
13 2002 30 205670
14 3454 31 16852
15 4862 32 13684
16 7854 33 6404
17 11352 34 3652
18 13992 35 2222
19 23122 36 1804
20 32582 37 660
21 33484 38 132
22 38656 44 2

23 46354
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