J. Korean Math. Soc. 46 (2009), No. 1, pp. 41-49

THE MAXIMAL VALUE OF POLYNOMIALS WITH
RESTRICTED COEFFICIENTS

ARTURAS DUBICKAS AND JONAS JANKAUSKAS

ABSTRACT. Let ¢ be a fixed complex number. In this paper, we study the
quantity S(¢,n) := maxgsea, |f(¢}], where Ay is the set of all real poly-
nomials of degree at most n — 1 with coefficients in the interval [0, 1]. We
first show how, in principle, for any given ¢ € C and n € N, the quantity
S(¢,n) can be calculated. Then we compute the limit lim,—o0 S{¢,n)/n
for every { € C of modulus 1. It is equal to 1/7 if { is not a root of unity.
If ¢ = exp(2nik/d), where d € N and k € [1,d — 1] is an integer satisfying
ged(k, d) = 1, then the answer depends on the parity of d. More precisely,
the limit is 1, 1/(dsin{x/d)} and 1/(2dsin(r/2d)) for d = 1, d even and
d > 1 odd, respectively.

1. Introduction

A nponzero polynomial with 0, 1 coefficients is called a Newman polynomial
after [6]. There is a variety of different problems in number theory and analysis
related to Newman polynomials. See, for instance, [2], [3], [4], [7], [8]-

This paper is motivated by the work of Akiyama, Brunotte, Petho, and
Steiner [1] which, at the first glance, has nothing to do with Newman polynomi-
als. They investigate the sequence of integers satisfying a,4+1 = —[Aap] — an-1,
n=1,2,.... It is conjectured in [1] that, for any ag,a; € Z and A € [-2,2],
the sequence a,, n = 0,1,2,... is periodic. The nontrivial case is when
A€ (-2,2)\{-1,0,1}. This problem seems to be very difficult, especially, when
the number ¢, defined by the equality ¢ + (= = —X (so that || = 1), is not
a root of unity. In fact, the only case when the periodicity of the sequence a,,
n=0,1,2,..., is proved and published [1] is when A = (1++/5)/2 = 2 cos(n/5),
so that ¢ corresponding to A is a root of unity. It seems that similar methods
can be applied to some other A of the form 2 cos(nr) with r € Q. However, for
A # 2cos(7r), i.e., when ( is not a root of unity, the periodicity problem seems
to be completely out of reach.

We now explain how this periodicity problem is related to polynomials with
coefficients in [0, 1] and, in particular, with Newman polynomials. Rewrite the
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recurrence equation as a;+1 + Aa;j + a;—1 = {Aa;}. Multiplying each equality
by ¢’ and adding all obtained equalities for j = 1,...,n, using ¢ + ™1 = —),
we get

(ant1 = Can)(" = Z{)\aj}cj + (a1 — Cao).

Jj=1

Put 7, := |an41 — Cayn|. Then
s . n .
Il < 1) {Aaz}¢7] + Irol = | Y~ {Aa; 3¢ | + Irol.
j=1 j=1

One can show easily (see Proposition 2.4 in [1]) that the periodicity of the
sequence a,, n =0,1,2,..., would follow from the inequality
2 /A2
lim sup n < —4L1\3
n—oo N m™

The sum Z;;l {Aa;}¢7~1 is equal to the value at ¢ of a certain polynomial of
degree < n — 1 whose coefficients are all in the interval [0, 1). This suggests the
problem of finding the maximum S({,n) over all degree < n — 1 polynomials
with coefficients in the interval [0,1] at a fixed point of the unit circle . We
shall prove below that lim,_,, S(¢,n)/n = 1/7 for every ¢ of modulus 1 which
is not a root of unity, so that limsup,,_, . [r»]/n < 1/7 which is too weak to
solve the above problem of periodicity.

Finally, let us consider the case A = 1/2. Then ¢ = (—1+4+/15)/4 satisfying
¢+ ¢! = —1/2 is not a root of unity. We claim that the sequence an, n =
0,1,2,...,defined by @nt1 = —[an/2]—an—1,n =1,2,..., contains at least four
equal elements. Indeed, without loss of generality suppose that the sequence
lan|, =0,1,2,..., is unbounded. Then, for any N € N, there is an index n >
N such that |an| > |aj| for j = 0,1,...,n — 1. The corresponding polynomial
f(z) == 37 1{a;/2}27~! is a Newman polynomial multiplied by 1/2. The
inequality

[ral = lant1 = Can| < 1£($)I/2+ la1 — Caol

combined with the inequality |an+1 — (an| > |S(¢as)| = |an]v15/4 implies
that

lan| < 21£(9)1/ V15 + 4lay — Caol/V15.

Hence, by Theorem 4 below, for any € > 0 and any sufficiently large n > n(e),
we have |a,| < (2/(rV/15) + €)n < 0.165n. The interval [—0.165n,0.165n]
contains at most 0.33n + 1 < 0.333n < n/3 distinct integers. Since |a,| > [a;],
J =0,1,...,n — 1, it includes all integers ag,as,-..,a,. If none of them is
repeated more than three times then the set {ag,a1,...,a,} is of cardinality
= (n+1)/3 > n/3, a contradiction.



THE MAXIMAL VALUE OF POLYNOMIALS 43

2. Main results

Let A, be the set of real polynomials of degree < n — 1 whose coefficients
all lie in the interval [0, 1]. Set

S(¢.m) = max |F(0)
for any ¢ € C. It is clear that

S(Cn) =14+ +¢"
for each nonnegative real number (.

We remark first that, for any fixed ¢ € C, the maximum S({,n) is attained
for some polynomial f(z) = ¢y +c1z+ -+ cp_12"! € A,,. Indeed, treating
f(¢) as a complex continuous function in n real variables cp, ..., cn—1 € [0,1],
by a standard argument of compactness, we see that its modulus |f((}] attains

-its maximum for some fixed values of the coefficients co,...,c,—1 € [0,1]. It
follows that, for any ¢ € C, there exist a (not necessarily unique) polynomial
f € A, such that S(¢,n) = |f({)].

Below, we sometimes use the vector representation of complex numbers. Let
us denote the value f(¢) whose modulus |f({)| is the largest among all f € A,
by the vector s. As we already said above, the vector s satisfying |s| = S(¢,n)

is not necessarily unique. We begin with the following simple, but important
observation:

Theorem 1. Let { # 0, and let s = f({) = Z;:ol c;i¢? be one of the vectors
of mazimal length, where f € A,. Then f is a Newman polynomial. Moreover,
for each j =0,1,...,n— 1, we have ¢; = 1 if the projection of the vector (7 to

the vector s is positive, and c¢; = 0 otherwise.

In particular, if s is one of the extremal vectors, then the line passing through
the origin and orthogonal to s contains none of the points 1,¢,...,{" . There-
fore, Theorem 1 suggests the following practical method for the computation

-of S(¢,n). Suppose that ¢ # 0. Let £ be any line passing through the origin
but through none of the n points D,, == {1,¢,...,¢(" }. Let us rotate the line
¢, say, counterclockwise until it reaches at least one of the points of D,,. Then
rotate £ again by an angle so small that no point of IJ,, lies on £ and stop. At
this, first, stop we calculate the sums 71 and [ of the numbers from D,, that
lie on both sides, say, ‘right hand side’ and ‘left hand side’ of £. (Note that
r1+81 =1+ {+---+ (" 1) Then rotate £ until it reaches at least one point
of D,, again, slightly pass this point, stop for the second time, and calculate
ro,lo, where rg + Iy = 14+ ( +--- 4+ ("1, and so on. The last, say, kth stop
will be when £ is rotated by the angle , so that it reaches its original position
(but changes its direction). It is easy to see that k < n, where the value n for
k is attained when no two points of D, lie on a line passing through the origin.
Theorem 1 implies that

S(C7 n) = max (Ir1l7 ih[a l7~217 ‘lQI» (R lrk|a llk{)
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In particular, if { is a negative real number, then all of its powers are positive
and negative real numbers. Let us start with a line, say, orthogonal to the real
axis and begin the process described above. Then there is only one stop, giving
1y =1+4+¢%2+--- 4+ (% where u < n — 1 is the largest even integer, and
li=—=(—¢3—---— (¥, where v < n—1 is the largest odd integer. The formula
S(¢,n) = max (Jr1], [11]) yields the following corollary:

Corollary 2. Let u and v be the largest even and odd numbers, respectively,
satisfying u,v < n — 1. If { is a negative real number then

S(C,")=max(1+C2+'..+<u’_.<(1+42+_._+Cv_1)).

Suppose that ¢ is a complex number of modulus 1. In the evaluation of
S(¢,n) there are two different cases depending on whether  is or is not a root
of unity. Let throughout (4 := exp(2mi/d) be a primitive dth root of unity. Let
also Uy be the set of its conjugates over Q, so that |U;| = ¢(d), where ¢(d)
stands for the Euler totient function. In the next theorem, we calculate the
value S(¢, md) for every ( € Uy and m € N.

Theorem 3. Suppose that m € N and ¢ € Uy, where d > 2. Then S({,md) =
m/sin(n/d) if d is even and S(¢,md) = m/(2sin(r/2d)) if d is odd.

The main theorem of this paper can be stated as follows:

Theorem 4. Let { € C be a complex number of modulus 1. If { € Uy, where
d €N, then

1, ifd=1,
nl_l_{rgg S(¢,n)/n = { 1/(dsin(n/d)) if d is even,
1/(2dsin{n/2d)) if d > 1 45 odd.

If ¢ is not a root of unity, then lim,_.., S(¢,n)/n = 1/7.

In the next section, we shall prove Theorems 1, 3 and 4. Some numerical
examples will be given in Section 4.

3. Proofs

Proof of Theorem 1. The vector s is the sum of the vectors (7, where j =
0,...,n ~1, scaled by ¢; € [0,1]. Clearly, |s| > 0. Put s; := (7. If there is an
index j € {0,...,n—1} such that the projection of s; = (7 to s is positive (i.e.,
the scalar product (s;,s) is positive) and ¢; < 1 then, by replacing ¢; by 1, we
obtain that the vector s — ¢;8; +s; = s + (1 — ¢;)s; has greater length than
Isl, a contradiction. Similarly, suppose that there is an index j € {0,...,n~1}
such that the projection of s; = ¢ to s is negative or zero (i.e., (s;,s) < 0) and
¢; > 0. Then, by replacing c; by 0, we obtain that the vector s—¢;s; has greater
length than |s|, because |s — ¢;8;|% — |s|* = c2|s;|? — 2¢;(s;,8) > cFIs; | > 0, a
contradiction again.
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The following simple lemma will be used in the proof of Theorem 3 and in
numerical examples of Section 4:

Lemma 5. Let I'y be the set of complex roots of 22 — 1 =0, where d > 2, and
let £ be a line passing through the origin but through none of the points of I'y.
Then the sum of all numbers from Ty that lie on one side of £ belongs to some
azis of symmetry of a reqular d-gon with vertices in I'y, and the modulus of this
sum is equal to 1/sin(r/d) for d even, and to 1/(2sin(w/2d)) for d odd.

Proof. Consider a half plane in that side of £, where exactly k = [d/2] points of
I’y are lying. Take (4 = exp(2ni/d). Let r be the smallest positive integer such
that ¢} is the first vertex of I'y in that half plane counterclockwise. Then the
points of T'y in this half plane are the powers (é, where j =r,...,7+k—1. Note
that all sums ¢;™ + ¢7""7177 ) where j = 0,...,[(k — 1)/2], lie on the same
axis of symmetry of a regular d-gon, hence so does their sum Z;:f -1 in' =
%Z?;& (¢5H + ¢ on the same side of £.

Next, recall that 1 + g+ --- + cj—l = (. Hence on both sides of £ we get
the sums lying on the same axis of symmetry whose moduli are

14 Gatoe o+ (1 = G — 1o - 1) = D,

cos(w/2d)

1
Sn(r/d) = Tem(r/2d) for dodd. OO

This is equal to m for d even, and to

Proof of Theorem 3. Suppose that { € Uy, where d > 2 is an integer. Since
¢% =1, we can write the value f(¢) of the polynomial f € Apg at z = as

FQ) = fi()+ -+ (D),

where fi,..., fm € Ag. Hence S(¢{,md) < mS((,d). Moreover, if fo € Ag is
a polynomial for which S({,d) = |fo(¢)| then, by setting f(z) := fo(2)(1 +
244 o 4 2m=Dd) ¢ A we find that £(¢) = mfo(¢). Hence S(¢{,md) =
mS (¢, d). It remains to show that S(¢,d) = 1/sin(n/d) if dis even and S(¢,d) =
1/(2sin(r/2d)) if d > 1 is odd.

Let f be a Newman polynomial of degree < d—1 for which we have S(¢,d) =
|£(Q)]- Put s = £(¢). By Theorem 1, s is the sum of all numbers {7, where
j € 40,...,d — 1}, that lie on one side of a line £ orthogonal to s but not
on ¢ itself. Moreover, none of the points ¢’ lies on £. Since { € Uy, the set
{¢/: 5 =0,...,d — 1} is precisely the set of roots of 2% — 1, ie., T'y. By
Lemma 5, |s| = 1/ sin(7/d) for d even and |s| = 1/(2sin(m/2d)) for d > 1 odd.
This completes the proof of the theorem. U

Proof of Theorem 4. The case {( = 1 is obvious. The maximal sum is 1 + ¢ +
o4+ ¢"1, 50 S(1,n) = n for every positive integer n. Suppose that ¢ € Uy
with d > 2. Choose an integer m such that md < n < (m + 1)d. Since S(¢,n)
is a nondecreasing function in n, we have S(¢,md) < S(¢,n) < S(¢, (m+ 1)d).
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Thus, by Theorem 3, for even d > 2, we have

1-d/n  n/d-1 m _ 8(¢,md) < S({¢,n)
dsin(w/d) msin(r/d) nsin(x/d) n  n
< S(¢,(m+1)d) m+1 < n/d+1  1+4+d/n
= n " msin(r/d)  nsin(r/d) ~ dsin(r/d)’

It follows that lim, ., S({,n)/n = 1/(dsin(n/d)) for each even d > 2. The
proof of the case when d > 1 is odd is similar: one just uses the ‘odd’ part of
Theorem 3 instead of its ‘even’ part.

Finally, suppose that ( = €*¢, where 0 < ¢ < 2, is a complex number
of modulus 1 which is not a root of unity. Then ¢/ ¢ Q. Suppose that
s = f({) = E’;;Ol cj¢? is one of the vectors of maximal length. Then, by
Theorem 1, ¢; € {0,1} with ¢; = 1 if and only if the projection of ¢ tos
is positive. Let £ be the line passing through the origin and orthogonal to
s = |s|e’™. The line £ divides the complex plane into two half planes. Let us
divide the open half plane with the point '” into 2M equal sectors, where for
each k € {—~M,...,—1,1,..., M} the kth sector consists of complex numbers
whose arguments belong to the interval [r+n(k—1)/2M,7+7k/2M) for k > 0
and to the interval [t + wk/2M, 1 + w(k + 1)/2M) for k < 0. (Since this half
plane neeéds to be open, one exception is that the interval corresponding to
k=—-Misopen (r —n/2, 7 —n(M — 1)/2M).)

For any j € {0,1,...,n — 1} the vector ¢’ is belongs to the sum s if and
only if it lies in one of the above 2M sectors. The sum of the vectors {7 =
cos(jo) +isin(j¢) is f(¢) =s = |s|e’™, hence f({)e™"" is a real number. Using
the fact that the number

n-—1 n—1
FQe™ =Y eie™ = cj(cos(jg — 7) +isin(j¢ — 7))

is real, we obtain that Z;-:Ol ¢cjsin(jé — 1) =0, so

O] = Qe = 3¢5 cos(jo — 7).
=0

Suppose that the sector corresponding to the index k contains ny, vectors of
theset {1,...,{" 1}, say, ¢ with j € Ni, where N is asubset of {0, 1,...,n—1}
of cardinality nx. Then ).y, cos(j¢ — 7) is at least ng cos(|k|r/2M) and at
most ng cos((|k| — 1)7r/2M). It follows that

M M
> (nk +n_y) cos(km/2M) < £ (O] < Y (nk + ni) cos((k — V)m/2M).

k=1 k=1

By an old result of Weyl [9] (see, e.g., Example 2.1 in [5]), the sequence
of fractional parts {m¢/2r}, m = 0,1,2,..., is uniformly distributed in the
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interval [0, 1), because ¢/2r ¢ Q. Fix € > 0. Then fix any M = M(e) € N
satisfying

L(H ! )<1+E and i<—1+ = >>1—5.
aM tan(m/4M) T aM tan(m/4M) T
Such an M exists, because lim,_, o ztan(m/z) = 7. Given k € {1,..., M}, {
belongs to the kth sector if an only if there is an ! € Z such that

T+ nlk—-1)/2M < jo—2nl <7+ 7k/2M,

ie, (k—1)/4M < {j¢/2rn — 7/27} < k/4M. Using uniform distribution of
{jo/2m —7/2r}, j = 0,1,..., in [0,1), we deduce that (1 — e)n/4M < ny <
(1 + e)n/4M for each sufficiently large n € N. The same bounds hold for
ke{-M,...,—1}. Hence

M M
1- e)inﬁ 3 cos(km/2M) < 1F(O] < (1+ E)Q—TPM- 3" cos((k — 1)m/2M).
k=1 k=1

Setting x = 7/2M into the identity

1/2 4 cos(z) + - - + cos((M — 1)z) = W’

we derive that

M 1 1
;005{(76 = m/2M) = 5 (1 + M)

and

M 1 1
gcos(lm/QM) = §(”1+ W)

Hence
n 1 n !
(1—€)m(—-1+ W) <FOI< (1+5)m(1+m).

By the choice of M, this implies that (1 ~¢)?n/7 < |f(¢)| € (1 +¢)?n/n. Thus
(1=-e)*/m < S(¢n)/n=1f(Q)/n] < (1+€)?/m

for each n z n(e). However, ¢ can be arbitrarily small, so limy,..« S(¢,n)/n =
1/7, as claimed. O

4. Practical computations

Take ¢ = exp(2ni/5) and n = 5. By Lemma 5, we can take any £ which
goes through none of the roots of 2z° — 1 = 0. Take £ such that 1 and ¢ are on
one of its sides. Then, by Lemma 5, we find that |1 + (| = 1/(2sin(x/10)) =
(1+v5)/2=1.61803....

Similarly, taking ¢ = exp(97mi/7) to be one of the roots of 2! —1 = 0
and n = 14, one can choose £ to be the imaginary axis. Then one of the
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extremal Newman polynomials will be f(z) = 1+ 23 + 2%+ 26 + 28 4+ 2% + 211,
because 0, 3,...,11 are the only powers of ¢ that are on the right hand side of
£. Lemma 5 and Theorem 3 gives f(¢) = 1/sin(n/14) = 4.49395....

Take { =i and n = 5. By Theorem 1, there are four possible quadrants for
the location of s. The maximum for |f(7)| is attained by Newman polynomials
1+ 2+ 2% and 1+ 23 + 2%, giving s = 2 & i. Hence S(i,5) = v/5. Note that
the maximal vectors 2 ¢ do not lie on an axis of symmetry of the square with
vertices 1,4, —1, —i. So Lemma 5 does not hold, because there is one ‘double’
vector 1 = 44,

It seems likely that when ¢ is not a root of unity one cannot expect any
simple formulae for S(¢,n). For example, for ¢ satisfying (? — (/2 + 1 =
0, we calculated the value S({,100) = 31.8928.... It is easy to see that
5(¢,100)/100 = 0.31892.. . is quite close to the limit value 1/7 = 0.31830...,
given by Theorem 4. The value S(¢, 100) is attained by the polynomial f(z) =
297 496 4 95 4 ;92 914 00 BT, 86 .82 81 T8 .77 76 )73
2724414 268 4 567 | ;63 4 ,62 4 58 57 54 .58 52 49 48 4 .44
243 4,394 ;38 /835 84 .33, 30 20, 28, .25, 924, 20 ,19 4 .16
242 M 4210 L 94 S S s+ 1.

Finally, we remark that the results of this paper may be applied to poly-
nomials whose coeflicients lie in any real interval [a, b]. In this case, if { # 1,
the constant factor b — a will appear on the right hand side of the formulas
established by Theorems 3 and 4. Indeed, any polynomial f(z) = E;:S c;j?’
with coefficients c; € {a, b] can be written as

f(z) = (b—a)g(z) + ah(z),
where g(z) = Z;:Ol ({¢; — a)/(b — a))z’ is a polynomial with coefficients in
[0,1] and h(z) =14 ---4+ 2" = (2" —1)/(z — 1). Now, h({) =0if ( #1is
an nth root of unity. Furthermore, |h(¢)| is bounded by an absolute constant
depending on ¢ only if |¢| € 1 and ¢ # 1, so that |h(¢)|/n — 0 as n — oo.
Taking n = d, Theorem 3 may be applied immediately to g(z). To obtain a

corresponding limit in Theorem 4, one can divide the equality by n, and then
let n — oo.
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