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ANALYSIS OF A STAGE-STRUCTURED PREDATOR-PREY
SYSTEM WITH IMPULSIVE PERTURBATIONS
AND TIME DELAYS

XINYU SONG, SENLIN L1, AND AN L1

ABSTRACT. In this paper, a stage-structured predator-prey system with
impulsive perturbations and time delays is presented to investigate the
ecological problem of how a pest population and natural enemy popula-
tion can coexist. Sufficient conditions are obtained using a discrete dy-
namical system determined by a stroboscopic map, which guarantee that
a ‘predator-extinetion’ periodic solution is globally attractive. When the
impulsive period is longer than some time threshold or the impulsive har-
vesting rate is below a control threshold, the system is permanent. Our
results provide some reasonable suggestions for pest management.

1. Introduction

Efficiency in controlling pests is a very complicated, but it is very necessary.
There are many ways to control agricultural pests, such as biological, cultural,
physical and chemical tools. However farmers often use pesticides to control
pests because of its efficiency and convenience. So all kinds of pesticides are
used to kill pests. Because of overuse of pesticides the residual pests evolve a
large number of pests with resistance to the pesticides. Furthermore the chemi-
cal pesticide kills not only pests but also their natural enemies. Actually, when
pests (prey) are caught or poisoned to a large extent, their natural enemies
(predators) become extinct due to no food, and then the pests increase rapidly.
Moreover most pesticides contribute to environmental contamination which is
dangerous to humans and animals. Overuse of chemical pesticides has brought
many ecological and sociologic problems.

The use of natural enemies to suppress pests is an important approach in
pests control. P. Debach and H. I. Freedman et al. in {7, 8, 9, 12] brought that
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biological control is the purposeful introduction and establishment of one or
more natural enemies from region of an exotic pest to kill the abundance of the
pest in a new region to a level at which it no longer causes economic damage.
All pests have their natural enemies. One approach to biological control is
using natural enemies to kill pests. When people kill most of pests by using
pesticides, their natural enemies will die out. Considering ecological balance
and saving of resources, we hope that the pest population and the natural
enemy population can coexist at a level where economic damage caused by
pests is acceptable. The harvest for pests may cause their natural enemies to
be extinct, therefore we need consider the effect of harvest for pests on their
natural enemies.

According to the ecological background, we need to build a model with age
structure. In [1} a model of single species growth incorporating stage-structure
was proposed as a reasonable generalization of the logistic model, which takes
the form
(1.1) { 3%'1(25) = azra(t) — yz1(t) — ae "zt — 7),

@o(t) = ae " Txa(t — ) — Bya(t),

where z; is the immature population density, z is the mature population
density. « represent the birth rate, v is the immature death rate, § is the
mature death and overcrowding rate, and 7 is the time to maturity. There
are also several mathematical models of stage-structured population growth in
the literature [1, 2, 5, 6, 11, 14, 16]. But these systems are mostly assumed
continuous, and impulsés have seldom been used. In this paper, we build a
new model with age structure for the predator, which assumes that the prey
is killed impulsively by harvesting or by pesticides. It is more appropriate to
biological environments.

The remainder of this paper is organized as follows. In Section 2, we propose
a stage-structured predator-prey model with impulsive perturbations and time
delays. We also give necessary preliminaries for our results. In Section 3, we
prove sufficient conditions for a predator-extinction periodic solution. We also
obtain, when the impulsive period (T") is below some threshold or impulsive
harvesting proportion (§) is at a appropriate extent, the periodic solution of
‘predator-extinction’ is globally attractive. In Section 4, we find sufficient con-
ditions for permanence. We show the system is permanent when the impulsive
period (T') is longer than some threshold or the impulsive harvesting proportion
() is below a control threshold. :

2. Model and preliminaries

Song et al. [15] in 2002 proposed a model consisting of two species, namely,
predators and prey, with stage structure and harvesting for the predators

2(t) = z(t)(r — a1y2(t) — bx(t)),
(2.1) 91(2) = aya(t) — Yy (t) — e ya(t — 7),
92(t) = ae™Tya(t — 7) — By3(t) + a2z(t)ya(t) — Eya(t),
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where x(t),y1(t), y2(t) represent the densities of prey, immature and mature
predators, respectively. Motivated by [15], we consider
(2.2)

£(t) = z(t)(r — a132(t) — bz(t)),

71(t) = aya(t) — yy1(t) — ae Tyt — 1), t # nt,

Yo(t) = ae™Tya(t — 7) — By (t) + az(t)ya(t) — vy2(t),

z(t*) = (1 - 6)a(t),

yl(t+) =M (f}v =nT,

y2(t7) = y2(2),
where r is the logistic intrinsic growth rate of the prey in the absence of the
predators, a; is the predation rate of the predators, a; has a similar meaning
as a1, b and 3 are overcroweding rates, v is the death rate of the predators, «
is the birth rate, v is a constant time to maturity. ¢ (0 < § < 1) represents a
partial impulsive harvest of the prey by catching or pesticides. We only consider
system (2.2) in the biological meaning region: D = { (z,y1,y2)| z,y1,y2 = 0}.

Since y; does not appear in the first and third equations of system (2.2}, we

can modify system (2.2} to the following model:

£(t) = z(t)(r — a1y2(t) — ba(t)),
(2.3) Y2(t) = ae™Tya(t — 7) — Byi (t) + axa(t)y2(t) — vya(t),
‘ z(tt) = (1 - 6)z(t),
Ya2(tT) = yalt).

For continuity of initial conditions and consider y; separately, we require

0
(2.4) yl((}):/ oyp(t)ertdt.

-
In the following, we give several lemmas which are very useful in the next

investigations.
Lemma 1. Let (x(t),y1(¢),y2(t)) > 0 for —7 < t < 0. Then any solution of
system (2.2) s positive.
Proof. Since

Z(t) = z(t)(r — a1y2(t) — bz(t)), t#nT, n€N,

z(tt) = (1~ 8)z(t), t=nT, neN,

we can easily see that z(t) > 0 for (0) > 0. Next we will show that y,(t) > 0
for all £ > 0. Otherwise, there exists a {5 > 0 such that yo{to) = 0. Assume
that ¢ is the first time such that y2(tg) = 0, that is,

tg = inf{t >0 yaolt) = 0}

Then g2(to) = ae "ys(to — 7) > 0. Hence for a sufficiently small € > 0,
Y2(to — €) > 0. But by the definition of o, y2(to —¢) < 0. This contradiction
shows that y2(t) > 0 for all t > 0. Now consider the equation:

P(t) = —yp(t) — ce™ Tyt = 7), ©(0) = y1(0).
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Obviously, (t) = e 7" [y1(0) — f ae"5=Tyy(s — 7)ds]. From (2.3), we have
(1) = e‘”T[f_T ayz(§)erede — [ € Nays(s — 7)ds]. Then ¢(r) = 0 and
o(t) >0 for t € [0,7). O

Using standard comparison theorem of ordinary difference equation (see [13])
we have y1(t) > 0 for ¢ € [0, 7). By induction, we can show that

n(®)>0 forallt>0
Lemma 2 (see [4, 14]). Let the function m € PC*[R*, R] satisfy the inequal-
ities
m(t) < pt)ym(t) +q(t),  t#tx,
m(ty) < dgm(ty) +bx,  t=tx,
t > to, where p,q € PC[R4, R] and d, > 0, by are constants. Then

m®) <mto) I deon([ plas)+ 3 ( [T dyemnl / p(s)ds) b

to<trp <t 0 to<tp <t tp<t;<t
[

t
dy exp( / p(0)do)a(s)ds, t > to.
0 s<tp<t s

Lemma 3. There erists a constant M > 0 such that z(t) < rb~! and y1(¢),
y2(t) < M for each solution of (2.2) with t being sufficiently large.

Proof. Since
E(t) = z(t)(r — a1y2(8) — bx(t)), t#nT,
z(tt)=(1-6)x(t), t=nT,
we can show that there exists a Ty > 0 such that < rb~! for t > Ty. Defining
the function
u(t) = z(t) + y1(t) + y2(t),
we have
Dru(t) + yu(t) a2 — BY2 + agzys — bz? + (r + )T — a17Y2
(+azrb~'yoo — By + (r + 7)rd'
_ a+azrb™! ,  (a+agrbl)?
< M t>T,t>ty,t#nT,

where M = gwbrL+ (r+)rb=L.

Consider the followmg impulsive differential inequalities

du(t)
— — ydul(t).

According to Lemma 2, we have
u(t) < (u(0%) = M)e™* + M,

IA

+(r+ 'y)rb‘1
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so lim; o u(t) < M. Hence u(t) is uniformly ultimately bounded, and there-
fore y1(t),y2(t) < M for each solution of (2.2) for all sufficiently large ¢. O

Lemma 4 (see [15]). Let &(t) = ax(t — 1) — bx(t) — cz*(t), a, b, ¢, T > 0,
z(t) >0 (-7 <t < 0).

(i) If a > b, then lim;, 2(t) = a;b.

(i) If a < b, then lim;—o0 z(t) =

Lemma 5 (see [3] Lemma 1.2). Consider the impulsive differential inequality

' (¢) < wltr@), t#m,
(25) { Ay £ 370 2

and the respective comparison equation

w(it) = wku), t#m,
(2.6) Au = PYi(ult), t=rm,
u(to) = wug.

Assume that:
1. w € C.(R4+ X R,R) and the functions ¥y : R — R are nondecreasing
in R. :
2. The function r(t) € PC*(Ry, R) satisfies (2.5) fort € [to,T) C R4.
3. The mazimal solution u*(t) of (2.6) is defined for t € [to,T).
Then r(t) < ut(t) fort € [to, T) provided that r(to) < ug.
Moreover, if in (2.5) “ <7 is replaced by “ > 7 and u™(t) is the minimal

solution of (2.6), then r(t) > u™(t) provided that r(ty) > ug.

3. Periodic solution of ‘predator-extinction’

Since y1(t) = y2(t) = 0, t > 0, we only consider the following impulsive
system

#(t) = z(t)(r — bz(t)), t#nT,
(3.1) { o(t*) = (1— 8)z(t), t=nT.

Solving Eq.(3.1), we have
(3.2)

_ (=1)T*)
2(t) = ST DT exp (= s t € ((n—1)T,nT),

1-4 T
(0 + VT) = sy = P,

System (3.2) has a unique trivial fixed point z§ = 0, that is to say system
(3.1) has a unique trivial periodic solution. Let 65 =1 —e~"7, if § > &%, then

‘dF(:c(nT*‘)) 1-6

dr T S L

z(nT+)=0
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Hence the trivial periodic solution z§ is globally asymptotically stable. If § <
dg, then

dF (z(nT)) 1-6

= > 1.
dzx z(nT+)=0 e~ T
Hence the trivial periodic solution z is not stable. If 6 < &, then system
(1—b—e”

(3.2) has a unique positive fixed point z§ = 'bvﬂ_ Using the discrete
dynamical system determined by the stroboscopic map, we have

z* (¢ fU-d-c"7) t -~ 1)T,nT
(t) = I esi=a—m=nny ¢ € (0= 1T,nT],

o((n - DTF) = 23 = 2*(0) = £4=225)

(3.3)

which is a positive periodic solution of system (3.3). In the following, we show
the positive periodic solution is globally asymptotically stable.

Theorem 3.1. If 6 < &} (65 = 1 —e™"T), then system (2.3) has a ‘predator-
extinction’ periodic solution (z*(t),0) for t € (nT,(n+1)T), n € N, where
r1-6-eT
z* (t) = b( € ) y
1-d—eT+exp{-r(t—(n—1)T)}
Proof. In (3.1) we carry out the change of variable x = 2~! and obtain the
linear non-homogenous impulsive equation

2(t)=b-— rz(t), t#nT,neN,
{ 2(tt) = 352(t), t=nT,neN.

t € ((n — 1)T,nT).

(3.4)

Let w(t,s) = [[,<pr<t ﬁe"(t‘s) be the Cauchy matrix for the corresponding
homogeneous equation. Then

¢
2(t) = w(t, 0)2(0) + b / wit, s)ds
0
is the solution of (3.4).

|2(t) — 2* ()] = w(t, 0)|2(0) — z*(0)],
where z(t) is any solution of (3.4) with 2(0) = 575, 2*(t) is the periodic solution
of (3.4) with 2*(0) = (g Since § < &5, that is 2seT < 1, then

1 —rt 1 —rT
= T et (T
w(t,0) H T3¢ _(1_66 ' — 0(t — o0),
o0<nT <t

80

1 |2(2) — 2" (0)]
z(t) t) t—>oo z(t) * 2*(t)
and then system (3.1) has a unique positive periodic solution z*(t), which is

globally asymptotically stable. Hence system (2.3) has a ‘predator-extinction’
periodic solution (z*(t),0) for t € (nT,(n+ 1)T), n € N, O

hm lz(t) — z*(¢)| = JLim =0,
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Theorem 3.2. If Ry = 55— 5‘)’(21T£16__f;f(;f;e_w) < 1, then the ‘predator-extine-

tion” periodic solution (z*(t),0) of system (2.3) is globally attractive.
Proof. Let (z(t),y2(t)) be any solution of system (2.3) with initial condition
(2.4). We consider the following impulsive differential inequalities
P < a(t)(r — ba(t),
z(tt) = (1 - 8§)z(t).
From (3.1) and (3.3), we get
. T1-6-eT)
1 < -t .
Tl S T Z e

Hence, there exist ng € N and an arbitrarily small positive constant ¢ such that
for all t > noT,

r1-6-eT)
(3.5) z(t) < (i )

From (3.5) and the second equation of (2.3), we have, for t > noT + 7,
yo(t) < e Tya(t — 1) — Bys(t) + axx(t)y2(t) — vy2(t)
< aeTTya(t - 7) — By (t) — (v — az2p)y2(2).
Consider the following comparison equation

P — emualt = 1) - B0 - (1~ azp)ualt)

Since R; < 1, we can see

+e=p.

ae” T <y — agp.

By Lemma 4, we obtain

lim z(t) =0.

t—oo
By standard comparison theorem of ordinary different equation ([13]) (y2(t) >
0), we have

Y2(t) — 0 (t — o0).
We assume that 0 < y2(t) < ¢ for t > noT, then by the first equation of system
(2.3) we get
5 (- a)at)(1 - ——a(t))

dt — ! r—aie )
Consider the following impulsive equation for ¢ > ngT

—dzét(t) = (r—ae)z(t)(l - T—_Z—l—g—m(t)), t#nT, n€N,

(3.6) a(tt) = (1-8)z(t), t=nT,neN,
z1(07) = z(0T).

System (3.6) has a unique positive periodic solution

N 15 B il
21( ) - b(l —§ —e—(r—a1e)T + 66—(r—a16)(t—nT))
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for nT <t < (n+1)T,¢t2>neT.
Clearly, 27 (t) — z*(t) (t — o0). From Lemma 5, for any £, > 0, there exists
n1 > ng such that for ¢t > nT

3.7 z(t) > 21(t) —e1.
On the other hand, from the first equation of (2.3), we have
2 < afo)r - bott).

From (3.3) we get the similar result, together with (3.7) we have
(3.8) z*(t) —e1 <z(t) <z™(t) + 1.
When ¢ is sufficiently large,

z(t) — z*(t) (t — o0). 0
Let
~rT
o= 1= asr — b(1 —azifT)(,y — ae T)’
™ 1 I 92T~ b(1 — 6)(y — ae™T)

r o (1—=26)(agr — b(y — ae™7))’

Corollary 3.3. (i) If aor < b(y — ae™"7), then the ‘predator-extinction’ peri-
odic solution (x*(t),0) is globally attractive;

(ii) if aar > b(y — e ) and 6* < § < 8 or T < T*, then the ‘predator-
extinction’ periodic solution (x*(t),0) is globally attractive.

In this section, we have proved that, when §* < § < 65 or T' < T, the
‘predator-extinction’ periodic solution (z*(t),0) is globally attractive. This
showed that the natural enemy is more affected compared to the pest. In
practice, we hope to control the pest population under the economic threshold
Level (ETL) so that the pests do not bring about immense economic losses
such that the pest population and the natural enemy population can coexist.
Hence we need to discuss the permanence of system (2.3).

4. Permanence

In the following, we define permanence.

Definition 1 (see [9]). System (2.3) is said to be permanent if there exists a
compact domain D € int Q such that every solution of system (2.3) with initial
conditions (2.4) will eventually enter and remain in D.

Theorem 4.1. If Ry = Rﬁi{%f) > 1, then system (2.3) is permanent.
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Proof. Let X(t) = (z(t),y2(¢)) be any positive solution of system (2.3) with ini-
tial condition (2.4). Note the second equation of system (2.3) can be rewritten
as:

@D 3(0) = foe™ = = Bua(t) + axo(ta(t) ~ e [ el

Define v(t) = y2(t) + ™" f ., Y2(u)du, and calculating the derivative of v(t)
along the solution of (2.3), it follows from (4.1) that
du(t o
(4.2 T — fae™ — Ba(t) + ase(t) — ol ).
Let y3 = —a1a2 (v+BM —ae )+ L(r — L), since R, > 1. Then y3 > 0.

a1
Hence there exists €5 > 0 such that

ae 7T — vy — BM + az0 > 0,

where o = 1= a”’2 (1- e—(ré—alyg)T) — 9. We claim that for any to > 0, it is

impossible that y2(t) < y3 for all t > 5. Otherwise there exists a to > 0 such
that y2(t) < y3 for all t > to. From system (2.3), we have

dﬂ(si(tt) > (r—ayd)z(®)(1 - ————T_:ly; z(t)), t#nT,neN,
z(tt) = (1-38)z(t), t=nT,n€N.
There exists a T; > tg + 7 such that for t > T}
r—a1y; ]
4.3 t 1-— — €3 =0.
(43) =(t) > b ( 1—6—(r—a1y§)T) 270
From (4.2) and (4.3), we have
du(t
ldi—) > [ae™ T — v~ BM + azgly2(t), t>ti.

Let y3* = minyey, 4, -] ¥2(t), we claim that yo(t) > y5* for all £ > ¢;. Otherwise
there exists a Ty > 0 such that yo(t) > yJ* for ¢ € [t1,t1 + 7 + T1] satisfying
yo(t1 + 7+ Th) = y5* and g2(t1 + 7+ T1) < 0. Hence
Jo(ti +7+T1) > e Tya(ty +Th) — yya(ts + 7+ Th) — Byz (t + 7+ T1)
+aox(ty + 7+ T1)y2(t1 + 7+ T1)
> (ae™"" —v— BM + az0)yy > 0.
This is a contradiction, and thus y2(t) > y5* for all ¢ > t;. As a consequence,
dv(t)
dt
for all t > t1, v(t) — oo (t — o0). This contradicts with v(t) < M(1+ae™77T).
Hence the inequality yo(¢) > y3 cannot hold for all ¢ > to.
If y2(t) > y3 for all sufﬁciently large ¢, the conclusion is evident; if yo(¢)
oscillates about y3, let y» = min{%2,y3e~""}. We claim that ya(t) > y» for all
sufficiently large ¢. There exist £, 7 > 0 such that yo(f) = y2(t+n) = y3,v2(t) <

> [ae™ —y — BM + az0]yy’ >0
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ys for £ <t < t+ 1. Since yo(t) is continuous, ultimately bounded and not
affected by impulses, there exists a constant t» independent of £ (0 < t2 < 7)
such that y2(t) > % for all £ <t < £+ ¢y, If i < ty, the conclusion is obvious.
fta<n<, from the second equation of (2.3) we have that §2(t) > —vy(t)
for t <t < t+n. Since yo(f) = yZ, it is obvious that yo(t) > yo for <t <
t+n < t+ 7. We have shown that ya(t) >y for £ <t < £+ 7. Then by
the same argument leading to the claim above, we can obtain y2(t) > yz for
t+7 <t <{+n. Since [, + n] is arbitrarily chosen, then ya(t) > yg for all
sufficiently large ¢.

By Lemma 3, we have y»(t) < M for all sufficiently large ¢. Then, when ¢ is
sufficiently large, we have

dz b
> (r— - .
7 2 (r—a:M)z(¥)(1 — alMx(t)}
Then there exists a sufficiently small ¢ > 0 for all sufficiently large ¢ such that

r—atM )
b (1 - 1— e—{r*alM)T)

z(t) > Z(t) —e > —e=2.
Let D = {(x,42) € Ri|z; < z(t) < rb~1,y2 < yo(t) < M}. Then D is
bounded compact domain which has positive distance from the coordinate axes.
We can see that any solution of system (2.3) with the initial condition (2.4) ulti-
mately enters and remains in the domain D, so that system (2.3) is permanent

(if Ry > 1). (W]
Let
5. = r— b(BM + v —ae™ )T
* - 62 ki
T (2,25

asr —b(BM + vy —ae™"T)’
Corollary 4.2. If § < 6, or T > T, then system (2.3) is permanent.

From Theorem 4.1, we can see that a small impulsive catching or poisoning
rate () or a long period between impulses (T') is a sufficient condition for the
permanence of system (2.3).

5. Conclusion

In this paper, we have investigated a stage structured predator-prey model
with time delay and impulsive harvest on the prey. We have shown that if
agr < b{y —ae™7), or if apr > b(y — ae™?7) and §* < § < 65 or T < T*, then
the predator (natural enemy) will become extinct, while, if § < . or T' > T,
the system is permanent. By these results, harvesting pests reasonably may
avoid extinction of the predator. From Theorem 4.1 and Corollary 4.2, we can
choose an appropriate impulsive harvest level (8) or impulsive period (T") such
that the pest population is under an economic threshold level (ETL) as well
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as the pest population and the natural enemy population can coexist. By the
above investigation, we can integrate pesticides and natural enemies to control
the pest. But how to optimize this control at lower costs much as not to damage
the environment is an important question. The variation of the environment
influences greatly effects on the pest population, so we have to consider periodic
changes, and this is left to future research.

Acknowledgement. The authors especially thank referees for their valuable
and detailed suggestions to improve the quality of the paper.

(1]
(2]

(3]

(10]
(11]

(12]

(13]

(14]

(15]

(16]

References

W. G. Aiello and H. 1. Freedman, A time-delay model of single-species growth with stage
structure, Math. Biosci. 101 (1990), no. 2, 139-153.

W. G. Aiello, H. 1. Freedman, and J. Wu, Analysis of a model representing stage-
structured population growth with state-dependent time delay, SIAM J. Appl. Math. 52
(1992), no. 3, 855-869.

D. D. Bainov and P. S. Simeonov, Impulsive Differential Equations, Asymptotic proper-
ties of the solutions, Series on Advances in Mathematics for Applied Sciences, 28. World
Scientific Publishing Co., Inc., River Edge, NJ, 1995.

, Impulsive Differential Equations: Periodic Solutions and Applications, Long-
man Scientific & Technical, Harlow; copublished in the United States with John Wiley
& Sons, Inc., New York, 1993.

Y. Cao, J. Fan, and T. C. Gard, The effects of state-dependent time delay on a stage-
structured population growth model, Nonlinear Anal. 19 (1992), no. 2, 95-105.

C. W. Clark, Mathematical Bioeconomics: The Optimal Management of Renewable Re-
sources, 2nd ed., Wiley, New York, 1990.

P. Debach, Biological Control of Insect Pests and Weeds, New York, Rheinhold, 1964.
P. Debach and D. Rosen, Biological Control by Natural Enemies, 2nd ed. Cambridge,
Cambridge University press, 1991.

H. 1. Freedman, Graphical stability, enrichment, and pest conirol by a natural enemy,
Math. Biosci. 31 (1976), no. 3-4, 207-225.

H. 1. Freedman and P. Mosen, Persistence definitions and their connections, Proc. Amer.
Math. Soc. 109 (1990), no. 4, 1025-1033.

H. I. Freedman and J. Wu, Persistence and global asymptotic stability of single species
dispersal models with stage structure, Quart. Appl. Math. 49 (1991), no. 2, 351-371.

J. Grasman, et al., A two-component model of host-parasitoid interactions: determina-
tion of the size of inundative releases of parasitoids in biological pest control, Math.
Biosci. 169 (2001), no. 2, 207-2186.

W. S. C. Gurney and R. M. Nisbet, Fluctuating periodicity, generation separation, and
the expression of larval competition, Theoret. Pop. Biol. 28 (1985), 150-180.

V. Lakshmikantham, D. D. Bainov, and P. Simeonov, Theory of Impulsive Differential
Equations, Series in Modern Applied Mathematics, 6. World Scientific Publishing Co.,
Inc., Teaneck, NJ, 1989.

X. Song and L. Chen, A predator-prey system with stage structure and harvesting for
predator, Ann. Differential Equations 18 (2002), no. 3, 264-277.

S. N. Wood, S. P. Blythe, W. S. C. Gurney, and R. M. Nisbet, Instability in mortality
estimation schemes related to stage-structure population models, IMA J. Math. Appl.
Med. Biol. 6 (1989), no. 1, 47-68.




82

XINYU SONG, SENLIN LI, AND AN LI

XINYU SONG

COLLEGE OF MATHEMATICS AND INFORMATION SCIENCE
XINYANG NORMAL UNIVERSITY

XINYANG 464000, Henan, P. R. CHiNa

E-mail address: xysong88@€163.com

SENLIN L1

COLLEGE OF MATHEMATICS AND INFORMATION SCIENCE
XINYANG NORMAL UNIVERSITY

XINYANG 464000, HENAN, P. R. CHINA

E-mail address: senlinli2005@163.com

AN 11

COLLEGE OF MATHEMATICAL SCIENCES
XIAMEN UNIVERSITY

XIAMEN 361005, FuJian, P. R. CHiNA
E-mail address: leean1980@163.com



