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NEW ITERATIVE ALGORITHMS FOR ZEROS OF
ACCRETIVE OPERATORS

YISHENG SONG

ABSTRACT. Two new iterative algorithms are provided to find zeros of
accretive operators in a Banach space E with a uniformly Gateaux dif-
ferentiable norm. Strong convergence for two iterations is proved and as
applications, the viscosity approximation results are obtained also.

1. Introduction

Throughout this paper, a Banach space E will always be over the real scalar
field. We denote its norm by || - || and its dual space by E*. The value of
z* € E* at y € F is denoted by (y,z) and the normalized duality mapping J
from E into 2E” is defined by

J(@)={f e E":(z, ) = |« fN. =l = [ fI}, Vaek.

Let F(T) = {z € E : Tz = z} denote the set of all fixed point for a mapping
T. Tt is well known (see, for example, [22]) that E is smooth if and only if J is
single-valued.

A mapping A : D(A) C E — 2F is called to be accretive if for all z,y € D(A)
there exists j(z — y) € J(z — y) such that

(u—wv,j5(x—y)) >0 foruc Az and v € Ay.

If E is a Hilbert space, accretive operators are also called monotone. An
operator A is called m-accretive if it is accretive and R(I + rA), range of
(I +rA), is E for all r > 0; and A is said to satisfy the range condition if

D(A) C R(I +rA),Vr > 0, where I is an identity operator of E and D(A)
denotes the closure of the domain of A. '

Interest in accretive mappings stems mainly from their firm connection with
equations of evolution. It is known (see, e.g., [25]) that many physically signif-
icant problems can be modeled by initial-value problems of the form

(1.1) &' (t) + Az(t) = 0, (0) = o,
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where A is an accretive operator in an appropriate Banach space. Typical ex-
amples where such evolution equations occur can be found in the heat, wave, or
Schrodinger equations. One of the fundamental results in the theory of accre-
tive operators, due to Browder (2], states that if A is locally Lipschitzian and
accretive then A is m-accretive. This result was subsequently generalized by
Martin [8] to the continuous accretive operators. If in (1.1) z(¢) is independent
of £, then (1.1) reduces to Au = 0 whose solutions correspond to the equilib-
rium points of system (1.1). Consequently, considerable research effects have
been devoted, especially within the past 20 years or so, to iterative methods
for approximating these equilibrium points. For example, Bruck [3] introduced
an iteration process and proved the convergence of the process to a zero of
a maximal momnotone operator in a Hilbert space. In [12], Reich extended
this result to uniformly smooth Banach spaces provided that the operator is
m-accretive. In 2003, Benavides-Acedoand-Xu [1] used the proximal point al-
gorithm of Rockafellar [14] and the iterative methods of Halpern (7] to find a
zero of an m~accretive operator A in a uniformly smooth Banach space with a
weakly continuous duality map J, with gauge ¢ in virtue of the resolvent J,
of A. Other investigation for a zero of an accretive operator can be found in
[4, 5, 6, 10, 11, 13, 18, 20, 21, 23, 24].

In this paper, we shall introduce two new iterative schemes for approaching
a zero of an accretive operator A:

(1‘2) ZTnt1 = Qptt+ BnZp + (1 —ap — ﬁn)Jrnf’f'm

(1.3) Tot1 = By + (1 = Bu)dr, (0nu + (1 — an)zy,),

where {a,} and {8,} are sequences in (0,1) and {r,} C (0,+00) satisfying
some appropriate conditions. The main purposes of this paper is to establish
the strong convergence for the explicit iteration schemes (1.2) and (1.3) to
a zero of an accretive operator A in a suitable framework of Banach spaces.
Furthermore, as applications, we obtain the viscosity approximation results.

2. Preliminaries and basic results

Let A : D(A) ¢ E — 2F be an accretive operator and A™'0 = {z €
D(A);0 € Ax}. We use J, and A, to denote the resolvent and Yosida’s ap-
proximation of A, respectively. Namely,

Jp = (I +rA)" and 4, = I

, >0,

For J, and A,, the following is well known (see, [22, pp. 129-144]):

(i) Arx € AJyz for all x € R(I + rA);
(i) |Arz] < |A4z| = inf{llyll;y € Az} for all z € D(A4) N R(I + rA);
(i) Jr : R(I +rA) — D(A) is nonexpansive (i.e., ||Jrz ~ Joyl| < |z —yl|
for all z,y € R(I + rA));
(iv) A710 = F(J,) = {z € D(J,); Jrx = z};
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(v) (The Resolvent Identity) For » >0 and t >0 and z € E,
t t

The norm of a Banach space E is said to be Gdteauz differentiable (or E is said
to be smooth) if the limit

" o+ tyl — o]
t—0 t

exists for each z,y on the unit sphere S(E) of E. Moreover, if for each y
in S(E) the limit defined by () is uniformly attained for z in S(E), we say
that the norm of F is uniformly Gdteaux differentiable. A Banach space E is
said to (i) uniformly smooth if the limit (*) is attained uniformly for (z,y) €
S(E) x S(E); (ii) strictly convex if JJE%U <lforalllz|| = |yl =1 =z #y;
(iii) uniformly convex if Ve € [0,2], 35 > 0 such that ﬂf;—y‘l < 1-—4, for all
el = [lyll = 1 with |z —y|| > e.

Lemma 2.1 (Suzuki [17, Lemma 2]). Let {z,} and {yn} be two bounded
sequences in a Banach space E and B, € [0,1] with 0 < liminf, . 8, <

limsup,,_, o, On < 1. Suppose Tp11 = Brxn + (1 — Bn)yn for all integers n > 1
and

lim sup(||yn+1 — Ynll = [[Znt1 — zal]) <O.
n—oo
Then lim ||z, — y,| = 0.
n—oo

Let 4 be a continuous linear functional on [*° satisfying |lul| = 1 = p(1).
Then we know that p is a mean on N if and only if

inf{an;n € N} < p(a) < sup{an,;n € N}

for every a = (a1, az2,...) € I°°. According to time and circumstances, we
tn{an) instead of p{a). A mean p on N is called a Banach limit if

,un(an) = Hn(an—l»l)
for every a = (a1,as,...) € 1°.
Lemma 2.2 ([23, Lemma 1]). Let C be a nonempty closed convex subset of a

Banach space E with a uniformly Géteauz differentiable norm. Let {x,} be a
bounded sequence of E and let u, be a Banach limit and z € C. Then

12 = 2
pnllzn — 2| gggunllwn yll
if and only if
unly — z,J(zn — 2)y <0, Vy € C.

Lemma 2.3 ([15, Proposition 2]). Let « is a real number and (zo,z1,...) € 1%°
such that unz, < o for all Banach limits. Iflimsup,, o, (Tnt1 —Zn) <0, then

limsup, . Tn < .
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Lemma 2.4 ({1, Lemma 2.3]). Let {a,} be a sequence of nonnegative real
numbers salisfying the property:

ant1 < (1 =Yn)an +vnfn, Yn2>0,

where {v,} C (0,1) and {B,} C R such that (i) E Tn = 00, (ii) hmsupﬁn <O0.

7=
Then {an} converges to zero as n — oco.
3. The strong convergence of iterations

In this section, we shall study the strong convergence of the Rockafeliar type
iteration (3.1) and Halpern type iteration (3.2):

(3-1) Tni1 = PnTn + (1 - ﬁn)'}rn (anu + (1 - an)xn),

(3-2) Tp41 = O+ BnZn + (1 — on — ,Bn)JTnxns

where both {a,,} and {8,} are sequences in (0,1) and {r,} C (0, +00) satisfying
the following conditions:

(cy) hm an, = 0; (C2) Z an = +o0; (C3) 0 < hm mf B, <limsup B, < 1;
(C4) hm mf ry, >0 and hm ’"1 - =1

o0 T

Theorem 3.1. Let E be a reflexive Banach space with a uniformly Géteaux
differentiable norm and A : D(A) C E — 2F be an accretive operator that sat-
isfies the range condition. Assumed that D(A) is convex subset of E and every
nonempty bounded closed convex subset of D(A) has the fized point property for
nonezpansive self-mappings. Suppose that 0 € R(A) and for an anchor point
u € D(A) and an initial value z; € D(A), {x,} is defined by (3.1). If {an}
~and {B,} are sequences in (0,1) and {r,} C (0,+00) satisfying the conditions
(C1), (C2), (C3), and (C4), then as n — oo, {x,} converges strongly to an
element p of A710.

Proof. The proof consists of the following steps.
Step 1. {z,} is bounded. Since 0 € R(A), we can take y € A~10 = F(J,).
It follows from the nonexpansion of J, for all r > 0 that
|Zntr — yll < IBnzxn + (1- Br)r, (nu + (1 — an)Tn) — :‘/“

< Bullzn — yll + (1 = Bu)||Jr,, (nu + (1 — an)zn) — yl|
< /sn”xn - y” + (1 - ﬂn)an”u - y” + (1 - ﬁn)(l - an)“x’n - y”
S =an(l=Bo)lllzn = yll + (1 = Bn)omlu — yll
< max{fjzn — yll, flu — yli}

IA

max{{lzy ~ yl|, [lu — yl[}.
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So, the set {z,} is bounded. Setting z, = a,u + (1 — an)z,, then so is
{zn}. This implies the boundness of {J,, z,} by ||, 2n — yll < llzn — y||. Let
M = sup{|ull, {|znll, [znll, | /r.2n]l}, where N denotes the set of all positive
neN
integers.
Step 2. lim ||z, — Jy2,|| =0 for all r > 0 and
From the control condition (C1), it follows that

1}1{&) flzn+1 = 2l = 0.

(3.3) lim |z, ~ zpll = lim apllu -2, =0

From the resolvent identity (2.1), we have

Ty Tr—
Yn = Jr 20 = Jrn_l(‘—"“: 1Zn+(1— nol
n

)Jrnzn)'

n
Therefore,

|Yn+1 — ynll

= “mezn-%-l = Jr, znll

r r
<| = (Zn41 = 2) + (1 = = )(Jrn+1zn+1 — 2|l
Tnt1 n--1
Ty
< zntr — znll + |1— — (lzns1 — Zn]l + IlJrn+1zn+1 - Zn“)
Tnt+1
r
g ”'/ETL+1 - Ty “ + aon’nH + Q41 “xn+1“ + [an - O‘n%—lmull + 4114[1 - r 7:_1
n
r
S ”l'n-H - xn“ + 4M(Ofn + An41 + U - = D
Tn41
Thus, by the conditions {C1) and (C4), as n — o0,
Tn
“yn—H - ynH e Hxn—H - mn“ < 4M(O¢n + Op—1 + |1 - D - 0.
Tn+1
Hence,
Lmsup(||yns1 — Ynll = |Zn+1 — znf)) <0.
n—Cco

Applying Lemma 2.1 to (3.1) with the condition (C3), we obtain
(3.4) nlggo 1z = Jr, 20| = nh_{rgo lyn — znll = 0.
Combing with (3.3), we have
{3.5) nlingg 1z — Jr, za]| = 0.
By the condition (C4), we have
W drnzn = Jrpznll = W = Jp)Jr, 20l = 7| Ardr, 20l < 71ATr, 20]

< |l Ay, znl = TM?_ — 0 (n— o00),
n

then
(3.6) lim |JpJr, 2n — Jr, 20]| = 0.

Tl O
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For all r > 0, we also have
lzn — Jrznll < |J2n — Irpznll 4+ | rp2n = Jedr, 2ull + | Jrdr 20 — Jrznl|

< 2llzn — Jrazll + 1ra2n = Jrdr, 2all-
Combining (3.5) and (3.6), we obtain that for all r > 0,
3.7 nlim fzn — Jrznll = 0.
Since limp oo [Zn — Jr, 20| = 0, it follows that

731_1}010 lzns1 — znll = nlin;o(l = Br)llJrnzn — znll = 0.

Since ||znt1 — 2nll < W2ne1 — Znta]l + |Znt1 — Zull + |Zn — 2a||, then, noting

(3.3),

lim ||zp41 — 2] = 0.
T OO

Step 3. limsup(u — p,J(z, — p)) < 0 for some p € A~'0. In fact, the

n—oC

following real valued function g can be defined on D(A) by

9(¥) = pnllza —y|*> for all y € D(A).
Clearly, g(y) is continuous and convex in D(A), and limjyj00 g(y) = co. Let
K = {z € D(A); g(z) = min{g(y); y € D(4)}}.

Then, it follows that K is a nonempty bounded closed convex subset of D(A)
[22, pp. 18-25]. Furthermore, J,.(K) C K for all r > 0. In fact, for each z € K,
we have from (3.7) that

9(Jr2) = pnllzn = Jr2l® < pnlllzn ~ Jezall + | Jr20 — Jr2]])?
< pnllzn = 2lI* = g(2).

So, J,z € K. Hence, by the hypothesis, there exists p € F(J,)NK ¢ A~10. It
follows from Lemma, 2.2 that

pnlu = p, J (2, — p)) < 0.

Since limp—oo [|2n+1 — 2n]| = 0, then it follows from the norm-weak* uniform
continuity of the duality mapping J that

n{%((“ =P (241 = D)) = (u—p,J(za — p))) = 0.

Hence, an application of Lemma 2.3 for the sequence {{u — p, J(z, — p)}} to
yield

(3.8) lim sup(u ~ p, J (2, — p)) < 0.

Tl OO
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Step 4. z, — p. Using Eq.(3.1), we make the following estimates:

[€n41 = pl?
= (Bn(zn —p) + (1 = Bn)(Jr, 2n = 9), J (Bns1 — P))
< Ballzn = plll I (zn+1 = P + (1 = Ba)llrn2n =PI (Tnts — P

< g, 120 = pll? +2¥lwn+1 -2l (1= B2) 2, — pl1? +zllwn+1 -z?

and
lzn = plI> = an(u — p, J(zn — p)) + (1 — an)(zn — p, J(zn — D))
< aplu—p, J(zn ~p)) + (1 = an)llzn — pllll2n — pll

I = l* + ||z — pII?
. .

< anlu—p,J(zn —p)) + (1 — ay)

Therefore,
l2nt1 = plI* < Bullzn —plI* + (1 = Ba)llzn — pII?
and
lzn = plf* < 20m(u = p, J(zn — p)) + (1 - @n)|lzn — pII.
Combing to yield

(3.9 Nznt1 =plI* < [1 - an(l = Ba)lllzn —pl* +20n(1 = Ba)(u—p, I (20 — ).

The assumptions (C2) and (C3) implies Y - ; o, (1 — 8p) = co. Hence, we
apply Lemma 2.4 to (3.9) with (3.8) to obtain the desired result. |

Theorem 3.2. Let E be a reflexive and strictly conver Banach space with a
uniformly Gateauz differentiable norm and A : D(A) C E — 2F be an accretive
operator that satisfies the range condition. Suppose that for an anchor point
u € D(A) and an initial value x; € D(A), {z,} is defined by (3.1) and {on}
and {3} are sequences in (0,1) and {r,} C (0,+00) satisfying the conditions
(C1), (C2), (C3), and (C4). If0 € R(A) and D(A) is convez, then asn — oo,
{xzn} converges strongly to an element p of A™10.

Proof. We observe that F is assumed to be a strictly convex space instead of to
have the fixed point property for nonexpansive self-mappings in Theorem 3.1.
So, we only need show Step 3. Following the proof technique of Theorem 3.1,
the function g can be defined on D(A) by

9(y) = pinllzn — y))? for all y € D(A)

and

K ={z € D(A); g(2) = min{g(y);y € D(A)}}.
Then, it follows that K is a nonempty bounded closed convex subset of D(A)
and J,(K) C K forallr > 0. Let y € F(J,) = A7'0. It follows from Day-
James Theorem ([9, Theorem 5.1.18, Corollary 5.1.19]) that there exists an
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unique p € K such that
e —yll = inf lip - =}l
Since y = J,y and J,p € K,‘

ly = Jepll = vy — Jrpll < lly - pll-

Hence p = J,p by the uniqueness of p € K. Thus p € K N F(J;) C A710. The
remainder proof is the same as Theorem 3.1, we omit it. ]

Theorem 3.3. Let E be a reflexive Banach space with o uniformly Géiteaux
differentiable norm and A : D(A) ¢ E — 2F be an accretive operator that
satisfies the range condition. Assumed that D(A) is a convex subset of E
and every nonempty bounded closed convex subset of D(A) has the fized point
property for nonezpansive self-mappings. Suppose that for an anchor point
u € D(A) and an initial value z1 € D(A), {z,} is defined by (3.2) and {an}
and {B,} are sequences in (0,1) and {r,} C (0,+0c0) satisfying the conditions
(C1), (C2), (C3), and (C4). If 0 € R(A), then as n — oo, {zn} converges
strongly to an element p of A~10.

Proof. As in the proof of Theorem 3.1, we proceed with the following steps.
Step 1. {z,} is bounded. Take y € A~10 = F(J,). It follows that
Izn+1 — 4l = Nant + Brzn + (1 ~ an — Br)Jr.2n — yll
< apllu =yl + Bullzn — yll + (1 — an = Bu)llJr,zn — i
S apllu—yll + Ballzn — yll + (1 — an = Bo)llzn — Yl
< onllu =yl + (1 - an)llzn — 9l
< max{||zn —yll, lu — yll}

AN

IA

max{||z1 - yll, lu ~yll}.
So, the sets {z,} is bounded. This implies the boundness of {J, z,} by
I Jro2n — yll < ll2n — yl|. Let M = S‘ég{ll“ll, Nznll, 1 e, 2nll}-

n!

Step 2. lim, o0 | — Jr2,|| = 0 for all » > 0 and also imp_oo ||Tng1 —
Znll = 0. Let yn = 1%5-u + (1 — 125-)Jr,Zn. By the definition (3.2) of the
sequence {z,}, we have
(3.10) Tnt1 = PnZn + (1 = Bn)yn.

Setting A, = 1—_‘_‘—%;, then by the conditions (C1) and (C3), we have lim,..o0
An = 0. Furthermore,

(3.11) lim ly, — Jr, Zul|| = lim Ayjlu — Jr, 2a|| = 0.
Flmer K> [ e o]
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From the resolvent identity (2.1), we have

Tn-1

Ty 2y = Jrn_l(rz_lxn + -0 1)

n Tn
Therefore,

]Jrn+1$n+l - ']'rnx'n‘”

T T
< H’f‘ B (mn—!—l - xn) + (1 i )(Jrn+1xn+1 - IEn)”
141 Tn+1

< onsr = all + 11~ | (s = 2l 4 1B = )
n+1
§ ”xn»}»] - 337@” + 4M|1 - I I
Tn+1

So, we also have the following estimates for y,,:
lYnt1 — ynll
= ”(An+1 - )\n)u + (1 - /\n+1)Jrn+1fr'n+1 - (1 - )\n)Jrn‘wnH
< l)\n+1 - )\nmun + ”Jrn_uxn-kl - J’rnxnn + >\n+1HJ7‘n+1$n+1H + An”‘}rnxn”
Tn
< “wn+1 - xﬂ” + 4Mﬂl - | { + )\n-H + An)*
nt
Thus, by the conditions (C1) and (C4), as n — oo,
r

Nyns1 — ynll = llenss — 20 < AM(J1 - nl | 4+ Ans1 + An) — 0.

Tn+
Hence,

lim sup({|yn+1 = Ynll ~ [[Tat1 — 2)) 0.
Applying Lemma 2.1 to (3.10) with the condition (C3), we obtain
m |y, —z,] = 0.
Ty OC

Combing (3.11), we have
(3.12) lim {fxp, — Jp, 2a| = 0.

T OO

Together with the condition (C4), it follows that
1 e drutn = Tr, @l = W = i) Jr zall = Tl Ap Ty, @l < 7|ATy, 20

< gzl = rlEn =22l g n o),

Then
(3.13) Jim ([[Jp g, 2 = Jp 2]l = 0.
For all r > 0, we also have
lzn — Jran|| < flzn — Jrn@oll + W20 — Jodr 2ol + | e dr, 2 = Jrzal|
< 2||on = Jrzall + | Jr,n — Jrdr,@all-
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Combining (3.12) and (3.13), we get that for all r > 0,
(3.14) Jim_lfzn ~ Jrzn] =0.
Moreover,
I€n+1 = znll < anllu = zall + (1 = an = Bu)ll Jruzn — all-
So, noting (3.12) and the condition (C1), we also obtain
1lm flens1 - zall = 0.

Step 3. limsup(u — p,J(zn — p)) < 0 for some p € A~10. We observe

that in Step 3 of Theorem 3.1, the result still holds if z, is replaced by z,.
Thus, using the same argumentation as Theorem 3.1 we obtain that for some
P € A‘IO == F(Jr),
(3.15) limsup{u — p, J{&p41 — p)) < 0.
N—00

Step 4. ||z, —p|| » 0 as n — oo. In fact, we can make the following

estimates:
Iznt1 = plI* = an(u = p, J(@ni2 — p)) + Bn(€n — D, J(@nr1 — p))
' + (1 — Oy — ﬂn)(Jrnxn - D J(xn—H - p))

— pll2 a2

< an{u — p, J(Znt1 — D)} + Pn |zn —pll "2”%1-{.1 ol
Jr %0 — plI2 + |®ns1 —

_,Bn)u T P“ 5 “ +1 }7“

Tn, = p|I? + |Tn+1 — P

o) 2~ — 2| 2“ n+1 = Pl .

2

+(1-oy

Lan(u—p,J(@nt1 —p)) + (1 -
And thus,

(3.16) [2ns1 = plI? < (1 = an)lzn = I + 20m(u — p, J (Zns1 — P)).

Applying Lemma 2.4 to (3.16) with (3.15) and the assumption (C2) to yield
the desired result. 0

Using the same argumentation as Theorem 3.2, the following result is reached
easily.

Theorem 3.4. Let E be a reflexive and strictly convex Banach space with a
uniformly Géteaur differentiable norm and A : D(A) C E — 2% be an accretive
operator that satisfies the range condition. Suppose that for an anchor point
u € D(A) and an initial value z, € D(A), {x,} is defined by (3.2) and {a,}
and {fp} are sequences in (0,1) and {r,} C (0, +00) satisfying the conditions
(C1), (C2), (C3), and (C4). If D(A) is convez and 0 € R(A), then as n — o0,

{zn} converges strongly to an element p of A™10.
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Remark 1. (i) Theorem 3.1 (3.3) appears to be independent of Theorem 3.2
(3.4). On the one hand, it is easy to find examples of spaces which satisfies
the fixed point property for nonexpansive self-mappings, which are not strictly
convex. On the other hand, it appears to be unknown whether a reflexive and
strictly convex Banach space satisfies the fixed point property for nonexpansive
self-mappings.

(i) There are many spaces which satisfy the fixed point property for non-
expansive self-mappings in the known results. For example, uniformly convex
Banach space, uniformly smooth Banach space, reflexive Banach space with
normal structure, Banach space with Opial’s condition and so on.

Corollary 3.5. Let E be a reflexive Banach space with a uniformly Gdteauz
differentiable norm and A : D(A) C E — 2F be m-accretive. Assumed that
D(A) is a conver subset of E and every nonempty bounded closed convex subset
of 5(14_) has the fixed point property for nonexpansive self-mappings. Suppose
that for an anchor point u € D(A) and an initial value x, € D(A), {zn} is
defined by (3.1) or (3.2) and {a,} and {B,} are sequences in (0,1) and {rn} C
(0, +00) satisfying the conditions (C1), (C2), (C3), and (C4). If 0 € R(A),
then as n — oo, {x,} converges strongly to an element p of A™10.

Proof. Since A is m-accretive, A is accretive and satisfies the range condition

D(A) C E = R(I+rA) for all 7 > 0. Following Theorem 3.1 or 3.2, the desired
result is reached. O

Corollary 3.6. Let E be a reflexive and strictly convex Banach space with a
uniformly Géteauz differentiable norm and A : D(A) C E — 2F be m-accretive.

Suppose that for an anchor point u € D(A) and an initial value z; € D(A),
{zn} is defined by (3.1) or (3.2) and {a,} and {B.} are sequences in (0,1)
and {r,} C (0,+00) satisfying the conditions (C1), (C2), (C3), and (C4). If
D(A) is convex and Q0 € R(A), then as n — oo, {z,} converges strongly to an
element p of A™10.

4. Some applications

In this section, as applications, we present several viscosity approximation
results using similar proof technique to Song [19] and Suzuki [16].

Lemma 4.1. Let E, A, D(A),{zn},{an},{Bn},{rn} be as Theorem 3.1 or

Theorem 3.3. For each u € D(A), put Pu = limy, .o . Then P is a nonex-

pansive mapping on D(A).

Proof. Let {x,} be defined by (3.1). Fix u € D(A). Define sequences {z,}

and {y,} by 21 = u and y; € D(4),

Tpi1 = PnTn + (1~ /Bn)v]rn (anu+ (1 — an)zy)
and
Ynt1 = :Gﬂ,yn + (1 - ﬁn)Jrn (a’nu + (1 - O‘n)yn)~
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Then we have
Zn+1 — Ynsall
< Ballen —ynll + (1 = Bo)ll(anv + (1 — an)zn) — (omu + (1 — an)ya)|l
< (1 —an(l = Bu)llzn — ynl,
and hence limp .00 |Zn — ¥n|| = 0 by Lemma 2.4. This means that Pu does

not depend on the initial value y;. That is, Pu = lim,_,o Zn is well defined.
We fix v € D(A) and define a sequences {yn} in D(A) by y1 = v,

Ynt1 = Bnyn + (1 — 6n)Jrn(an'U +(1- an)yn)
Then Pv = limy, o0 ¥n- We also have

€41 = ynaall (L = Bu)ll(anu + (1 = an)zn) — (nv + (1 - an)ya)|
+ Ballzn — yull
<1 = on(1 = Ba))llzn — ynll + an(l = B)llu — |
Therefore by induction, ([€n+1 — Yn+1]| < [|[u — v|| for all » € N. This implies
1Py — Pu|| < [lu—wv]|.
Similarly, we also obtain the same conclusion when {z,} be defined by (3.2).
This completes the proof. ]

Theorem 4.2. Let E be a reflexive Banach space with a uniformly Géteauz
differentiable norm and A : D(A) C E — 2F be an accretive operator that
satisfies the range condition. Assumed that D(A) is a convexr subset of E
and every nonempty bounded closed convex subset of m has the fized point
property for nonexpansive self-mappings. Suppose that for an initial value y1 €

D(A), {yn} is defined by
(4'1) Yn+1 = PnYn + (1 - ﬁn)Jrn (anf(yn) + (1 - an)yn}a

where f s a contractive self-mapping on D{A) with the contractive coefficient
B € (0,1). Assumed that {on} and {B.} are sequences in (0,1) and {r,} C
(0,+00) satisfying the conditions (C1), (C2), (C3), and (C4). If 0 € R(A),
then as n — oo, {yn} converges strongly to an element z* of A~10.

Proof. Let P be as Lemma 4.1. Then P is a nonexpansive mapping from D(4)
to A0 and also Pf is a contractive mapping of D(A) into itself since

|Pf(=) - Piwll < () — f)ll < Blle —yll for all z,y € D(A).

Thus, Banach Contraction Principle guarantees that there exists a unique ele-

ment z* € D(A) such that z* = Pf(z*). Define a sequence {z,} in D(A4) by
z; € D(A) and

Tn+i = Pnln + (1 = Bo)p (0nf(z*) + (1 — an)zn), Yn > 1L
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Then, by Theorem 3.1 and Lemma 4.1, lim, . z, = Pf(z*) = z* € A710.
Next, we show y, — z* as n — oo. Indeed, it follows that

Nyn+1 = Zar1l)
< Brllyn — zall
+ (1= Bl Jra(anf(yn) + (1 = an)yn) — Jr, (anf(2") + (1 — an)zn)|l
< Ballyn — ol + (1 = Br)anBllyn — z*|| + (1 = an)(1 = Bu)llyn — znll
SA=(1=B)1 = Bn)om]lzn = ynll + Bon(l — Ba)llen — 27|

Applying Lemma 2.4 to obtain limy, oo ||Zrn =] = 0. Therefore, limy, o0 ||yn—
z*|| = 0. This completes the proof.

Theorem 4.3. Let E be o reflexive Banach space with o uniformly Gateaux
differentiable norm and A : D(A) C E — 2F be an accretive operator that
satisfies the range condition. Assumed that D(A) is a convexr subsel of E
and every nonempty bounded closed convex subset of D(A) has the fived point
property for nonezpansive self-mappings. Suppose that for an initial value y, €

D(A), {yn} is defined by
(4.2) Ynt1 = Cnf(Yn) + Bnin + (1 — an — Bn)Jr, Un,

where f is a contractive self-mapping on D(A) with the contractive coefficient
B8 € (0,1). Assumed that {a,} and {B,} are sequences in (0,1) and {r,} C
(0, +00) satisfying the conditions (C1), (C2), (C3), and (C4). If 0 € R(A),
then as n — oo, {y,} converges strongly to an element z* of A~'0.

Proof. Using the same argumentation as Theorem 4.2, we can obtain that there

exists a unique element z* € D(A) such that z* = Pf(z*). Define a sequence

{zn} in D(A) by z; € D(A) and
Tnt1r = @ f(2") + Bntn + (1 — an — B )Jr, 20, In > 1

Then, by Theorem 3.3 and Lemma 4.1, lim,_,o &, = Pf(z*) = z* € A~10.
Next, we show y,, — x* as n — oco. Indeed, it follows that

lyn+1 = Tn1ll
< anllf(yn) = F@) + Bullzn ~ yall + (1 — o — Ba)llJrnYn — JrnZall
< anfllyn — 2| + (1 — an)l|zn — ynl|
<[ -1 = Ban]lzn - yull + Ban|izn — 2*|.

Applying Lemma 2.4 to obtain lim, o {|Zrn —yn|| = 0. Therefore, imy oo ||y —
z*|l = 0. This completes the proof. O
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