J. Korean Math. Soc. 46 (2009), No. 1, pp. 151-170

BLASCHKE PRODUCTS AND RATIONAL FUNCTIONS
WITH SIEGEL DISKS

KoH KATAGATA

ABSTRACT. Let m be a positive integer. We show that for any given
real number « € [0,1] and complex number p with |u| < 1 which satisfy
e2miaym o 1 there exists a Blaschke product B of degree 2m + 1 which
has a fixed point of multiplier 4™ at the point at infinity such that the
restriction of the Blaschke product B on the unit circle is a critical circle
map with rotation number a. Moreover if the given real number « is
irrational of bounded type, then a modified Blaschke product of B is
quasiconformally conjugate to some rational function of degree m + 1
which has a fixed point of multiplier ™ at the point at infinity and a
Siegel disk whose boundary is a quasicircle containing its critical point.

1. Introduction

Let f: C — C be a rational function of degree d > 2. In the theory of the
complex dynamics, there are two important sets called the Fatou set and the
Julia set. The Fatou set F(f) is the set of normality in the sense of Montel for
the family {f"}52,, where f* = fo.--o f is n iterates of f. The Julia set J(f)
is the complement C \ F(f). A solution zq of the equation f(z) = z is called
a fized point of f and A = f/(zo) is called the multiplier of zo if zg € C. The
multiplier of zo = co is defined as the multiplier of the origin for ¥ o f o ¢!,
where ¥(z) = 1/z. The fixed point zg is attracting, repelling or indifferent if
its multiplier X satisfies that |A| < 1, |A\| > 1 or |A| = 1 respectively. Attracting
fixed points belong to the Fatou set and repelling fixed points belong to the Julia
set. In the case that zo is indifferent, the classification is more complicated.
The fixed point zj is parabolic, a Siegel point or a Cremer point if its multiplier
is a root of unity, zg € F(f) or 2o € J(f) respectively. Parabolic fixed points
belong to the Julia set. The Fatou component containing a Siegel point is called
a Siegel disk centered at zp. Non-repelling fixed points “capture” at least one
critical point of f, which is a solution of the equation f’(z) = 0.

R In Ehis paper, we investigate rational functions with Siegel disks. Let f :
C — C be a rational function of degree d > 2 with a fixed point of multiplier
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e*™ af the origin, where a € [0,1] is irrational. If the origin is a Siegel point,
then there exists a local holomorphic change of coordinate ® : I — C with
0 = ®(0) such that ® ! o f o ®(2) = e?™*z, where D is the unit disk. The
Siegel disk A centered at the origin contains ®(D).

For the irrational number «, we consider the continued fraction expansion
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of o and then a sequence of rational numbers
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converges to «, where a,, i8 a positive integer uniquely determined by « for all
n € N. The irrational number « is a Diophantine number of order k > 2 if
there exists £ > 0 such that
a—~|>—=
q) ¢°
for all rational numbers p/g. The class of Diophantine numbers of order x
is denoted by D,. The irrational number o belongs to D, if and only if the

sequence
oG
{ n+1 }
qg—l n=1
is bounded. In the case that k = 2, the sequence {a,}32, is bounded if and
only if {gn3+1/¢n}52., is bounded. Therefore Diophantine numbers of order 2

are said to be of bounded type. The irrational number « is a Bryuno number if
the sum

ple

o0

Z log g1

n=1 In

converges. The class of Bryuno numbers is denoted by B. Note that for & > 2,
D; € D, & B and D, has full measure on R/Z (see [7] or [11}). Bryuno showed
that if o is a Bryuno number, then f is linearizable at the origin. Yoccoz
showed that if a quadratic polynomial P,(z) = 22 + e?™®2 is linearizable at
the origin, then « is a Bryuno number, that is, P, is linearizable at the origin
if and only if & is a Bryuno number. Moreover the following theorem holds if
«a is of bounded type (see [10] or [11]).

Theorem 1.1 (Ghys-Douady-Herman-Shishikura-Swiatek). If an irrational
number a € [0, 1] is of bounded type, then the boundary of the Siegel disk A of
P, centered at the origin is a quasicircle containing its critical point —e?™*® /2.
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Moreover if the irrational number « is of bounded type, then the following
holds:

(a) (Petersen). The Julia set J(P,) of P, is locally connected and has measure
Z€eT0.

(b) (McMullen). The Hausdorff dimension of J(P,) is less than 2.

(c) (Graczyk-Jones). The Hausdorff dimension of A is greater than 1.

Conversely, Petersen showed that if 0A is a quasicircle containing the finite crit-
ical point —e™®/2 of P,, then a € [0,1] is of bounded type. Zakeri extended
Theorem 1.1 to the case of cubic polynomials.

Theorem 1.2 ([12]). Let P be a cubic polynomial with fized point of multiplier
e?™® qt the origin. If an irrational number o € [0,1] is of bounded type, then
the boundary of the Siegel disk A of P centered at the origin is a quasicircle
containing one or both critical points.

Geyer showed fche following theorem which is extended to some polynomials.
Let Qm(2) = e?™®2(1 4+ 2/m)™. Note that P, is conformally conjugate to Q1.

Theorem 1.3 ([4]). Let m > 1 be a positive integer. If an irrational number
a € [0,1] is of bounded type, then the boundary of the Siegel disk A of Qm
centered at the origin is a quasicircle containing its critical point —m/(m +1).

Let Fy ,(z) = 2(z + A)/(pz + 1) with Ay # 1. The origin and the point at
infinity are fixed points of F) , of multiplier A and u respectively. In the case
that g =0, F0(2) = Az + 22. Therefore the quadratic rational function Fj ,
is considered as a perturbation of the quadratic polynomial z — Az + 2%, In
the case that A\ = e?™® and « is irrational of bounded type, the author showed
the following theorem which is a generalization of Theorem 1.1.

Theorem 1.4 ([5]). If an irrational number o € [0,1] is of bounded type,
A= €2 gnd u € D with A\u # 1, then the boundary of the Siegel disk A of
F, . centered at the origin is a quasicircle containing its critical point.

For complex numbers A and p with Ay # 1 and a positive integer m, let

z+A\™
Fy ,m(z)= .
() = 5 (255

Note that F) ;1 = F),. The origin and the point at infinity are fixed points
of F ;i m of multiplier A™ and p™ respectively. In the case that u =0,

Froom(z)=z(z+N)™.

Therefore the rational function F) ,, m of degree m+1 is considered as a pertur-
bation of the polynomial F ¢ n, of degree m+1. Note that F g », is conformally

conjugate to Q. if A™ = €2 We show the following theorem which contains
Theorem 1.4.
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Theorem 1.5. Let m > 1 be a positive integer and let u € D. If an irrational
number o € [0, 1] is of bounded type and e*™*u™ # 1, then there exist suitable

pairs {(Aj, ;) Y2, with

(i) AP = e®™, u* = u™ and Ajp; # 1 for j € {1,...,m}

(i) Aj# e ifj#k ‘
such that for each j € {1,...,m}, the boundary of the Siegel disk A of Fx; ,;,m
centered at the origin is a quasicircle containing its critical point.

Theorem 1.5

m=1, u=0 | Theorem 1.1

m=1 Theorem 1.4

u=0 Theorem 1.3

TABLE 1. Special cases of Theorem 1.5

Theorem 1.5 contains Theorems 1.1, 1.3, and 1.4. Moreover we obtain the
following corollary.

Corollary 1.6. Let m > 1 be a positive integer, o € [0,1] be an irrational
number of bounded type, p™ = e2™8 with e>™p™ # 1 and {(Aj, pj)}7y be as
in Theorem 1.5. If B € [0,1] is an irrational number of bounded type, then the
boundaries of Siegel disks A and Ay of F; ., m centered at the origin and the
point at infinity respectively are quasicircles containing its critical point.

2. Blaschke products with a critical point on the unit circle
2.1. Existence of Blaschke products

Let.-m > 1 be a positive integer. We consider a Blaschke product

B — p2mimd F—a z -
(2) =e ? (1 —az 1-bz

of degree 2m + 1 with ab # 1 and 0 < |a| < [b] < co. Let A = abe*™* and let
p = abe=2"%®_ The derivative B’ of B is

B = (1- af):ge— bz)? (12—_ aaz)m_l (12—_ Bl;)m_l 9(2),

9(2) = abz* + { ~(m +1)(@+8) + (m — 1)abla + b)}2*

where

+ {2m+ 1— (2m —1)|ab]® + |a + b|2}z2

+{~m+1)(@+8) + (m ~ Vab(@+5) } s+ ab.
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So multipliers of fixed points z = 0 and z = oo are A™ and p™ respectively. Let
¢1, €2, 3 = 1/& and ¢4 = 1/¢; be solutions of the equation g(z) = 0. Therefore
critical points of B are a, 1/a, b, 1/b ci, co, c3 and ¢4 and multiplicities of
critical points a, 1/a, b and 1/b are m — 1. Since c1, c2, c3 and ¢4 are solutions
of g(z) = 0, we obtain that

g(2) = ab(z — c1)(z — c2)(z — e3)(z — ca)
= (‘15{24 —C323 +C2? — Ciz + Co},

where

1 1
Ci=c1+=—+c+—,
C1 C2

c c 1 1
02=_—1+_—2+(C1+:—) (C2+-_—),
C1 C2 (5] (6]
1

Cy

Il
518
N
o
[\
+
-
~—
+
818
TN
Ay
+
(’:II
N——

Co=—.

Comparing coefficients of two representations of g(z) implies that

(1) cl+;+02+:1_:(m+1)(a+b)—__(m—1)(a+b)ab,
1 Co ab

1 1 1— (2m — 1)|ab|? b|?
(2) (_:_1+;—2+<01+E_‘>(Cz+—):2m+ (mdl_))|a| +|a+|7

3 = (02+%> + ;—z <c1+_i> _(m+1)a+h) ;B(m—l)(&+5)ab7

@) ac _ o

+{(C2—|—%)2—2—2}65+('m—1) <c2+é> (a + b)ab

+2m+1—(2m—1)|abl* =0
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and eliminating c; and ¢; from equations (1), (3), and (4) gives that

© Eg (cz+ )ab+(m+1)( )(a+b) (m—i)( )(a+b)ab
= % (02 + = ) ab+ (m+ 1)}{a + b) — (m — 1){@ + b)ab.
We obtain that

la+b]* — 2(m + 1)e?™*° (@ + b) — e>™(~2)gh + 3¢ 20 gh

7 . _
™ +2(m ~ 1)e*™*(a + b)ab+ 2m + 1 — (2m — 1)|ab> = 0
and
27m( 2¢) m+1 2w -1 2
ab+ ——e™(a+b) - 2 2™ (a + b)ab
(8)
= emi2egh 4 T E Lm0 (g 4 p) - 220 (a4 Bab

by substituting c; = €2 into equations (5) and (6). Eliminating ab from
equations (7) and (8) gives that

3 , -
9 la+b?— 5(m+ 1)e*™(a + b)

_Mmt1 i)

-1
— (a+b) + 2e*™%¢gh + 2= 3 e*™=9) (g + b)ab

+ :—;(m — 1)e*™%(a + b)ab + 2m + 1 — (2m — 1)|ab]® = 0.
Let ( =a+b. Then
(10)
IC'Z _ §_(m + 1)e2m:,o<~ m;— 1 27rz( p)g 4 28271-1, 2cpab + > =1 21rz( <p)a6§
+ §(m —1)e*"%gh¢ + 2m + 1 — (2m — 1)|abf> = 0.
The real part of the left side of the equation (10) is
(11) 2?2 +y% - 2w{(m + 1) cos2mp ~ (m — 1)rcos2n(p + 6 +w)}
- 2y{(m + 1)sin 2w + (m — 1)rsin2n{p + 8 + w)}
+2rcos2n(2p +0+w)+2m+1—(2m—1)r? =0
and the imaginary part of the left side of the equation (10) is
(12) y{(m +1)cos2mp+ (m — V)rcos2n(p + 6 + w)}

- :c{(m+ 1) sin2mp — (m — Drsin2n(p + 9+w)}
+ 2rsin2r(2p + 0+ w) =
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where ¢ = x 4 iy and u = abe 2" = 12"  The solutions of simultaneous
equations (11) and (12) are

x = {(m +1)% 4+ (m = 1)%r? +2(m? — )rcos2r(2p + 6 + w)}—l

X {04 cos 2mp + Cj cos 2m(p + 8 + w) + Cg cos 2m(3p + 0 + w)

+C7cos2m(3p + 260 + 2w)}
and
y= {(m +1)2 4 (m — 1)%r® + 2(m? — 1)rcos2m(2¢ + 0 + w)}—1
X {C4 sin2mp — Cssin 2m(p + 0 + w) + Ce sin 2m(3p + 6 + w)
—Cysin2n(3p + 20 + 2w)},
where

Cy = (m+1)22m+ 1) — 2m(m? — 1)r?,
Cs = 2m(m? — 1)r — (m — 1)2(2m — 1)r?,
Cs = —(m +1)%r,

Cr = —(m —1)*%

Hence ¢ = x + iy satisfies the equation (10). Conversely, we show the following
theorem.

Theorem 2.1. Let p = 7™ € D and let a = a(8,p) and b = b(8, )
with |a| < |b| be complex numbers satisfying relations a + b = x + iy and
ab = re 2™ 0+Y) that is, a and b are the solutions of the equation

M 7% — (x +iy)Z + re”2mi0+e) = g,

where z and y are as above and (6, ¢) € [0,1]%. Then the following holds:

(a) In the case that r = 0, solutions of the equation (1) are a = 0 and b =
(2m + 1)e?mie,

(b) In the case that 0 < r < 1, the equation (1) does not have double roots.
Moreover 0 < |a] < 1 < |b] < o0.

(¢) In the case that r =1 and 29 + 0 + w = 0 (mod 1), the equation (1) has
double roots and a = b = >,

(d) In the case that T =1 and 290 + 0 +w # 0 (mod 1), the equation (f) does
not have double roots. Moreover 0 < |a| <1 < |b| < o0.

(e) In the case (a), (b) or (d},

B(2) = Bypoum(2) = €7z ( % >m ( = )’"

1—az 1— bz
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s a Blaschke product of degree 2m + 1 and the point at infinity is a fived
point of B with multiplier u™. Moreover z = ™% is a critical point of B
and Blr : T — T is a homeomorphism, where T is the unit circle.

Proof. First, we show the following lemma.

Lemma 2.2. |z +14y| > 2. Moreover the equality holds if and only if r = 1 and
20404+ w=0 (mod 1) hold.

Proof of Lemma 2.2. We calculate that
|z + iy
= {(m +1)2 + (m ~ 1)%r2 4+ 2(m? — 1)r cos 2n(2¢ + 6 + w)}—2
% ’04 2T 4 Oy 2mile+0+w) | 0 (2riBet+w) 4 (o o= 2milBe+20+2w) ‘2

= {(m +1)% + (m — 1)%r2 4 2(m? — 1)r cos 2m (20 + 6 + w)}_2

x {04627ri<p + 056—27ri(<p+0+w) + 06627ri(3<p+0+w) + C7e—27ri(3tp+20+2w)}

x {C4e~21r'i<p + 05627ri(¢’+0+w) + 066—27ri(390+0+w) + C7eZ7r11(3np+20+2w)}
2
= {(m +1)2 4+ (m — 1)%r2 + 2(m? — 1)r cos 2m (20 + 0 + w)}

X {CZ + Cg + 062 + Cv? + (20405 + 2C4Cs + 20507) cos 2m(2¢ + 6 + w)

+ (2C’4C’7 + 20506) cos2m-2(2¢ + 0 + w) + 2CsCr cos 2m-3(2p + 0 + w)}

= {(m +1)2 + (m — 1)%r2 4+ 2(m? — 1)rcos 2m(20 + 0 + w)}
X {Cz + 052 + Cg + C—? —2C4C7 — 2C5Cy
+ 2(0405 +CyCs + C5Cr — 30607) cos 27(2p + 6 + w)

+ 4(0407 + 0506) cos? 27{'(2(,0 + 8+ UJ) + 8CeCr cos® 27T(2(p + 6+ w)}

since
cos2m-2(2¢ + 0 + w) = 2cos? 2m(2p + 0 + w) — 1
and

cos 2m-3(2p + 6 + w) = 4 cos® 27(2p + 8 + w) — 3 cos 2m (20 + 0 + w).
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Therefore
|z + 4y|?

-2
= {(m +1)% 4 (m—1)%r? + 2(m® — Drcos2m(2p + 0 + w)}
x [4m6 +20m® + 41m* + 44m® + 26m® + 8m + 1

(

—4m® — 12m® — 5m* + 12m® + 14m? + 8m + 3) r*
~4m® + 12m® — 5m* — 12m® + 14m? — 8m + 3) r*
4m® — 20m® + 41m* — 44m® + 26m? — 8m + 1) 1°

—16m® + 44m* — 24m® — 4)

159

(8m® — 16m® — 10m* + 48m® — 44m? + 16m — 2) r5} cos 27(2¢p + 0 + w)

+
+(
+
+{(8m® + 16m° — 10m* — 48m? — d4m? — 16m —2) r
+
+
+{ (-16m® — 20m" + 16m® + 24m?® — 1) r*

+

(16m5 —20m* — 16m3 + 24m? — 4) 7"4} cos® 2m(2¢0 + 0 + w)
+ (8m* — 16m® + 8) 7% cos® 2m(2p + 0 + w)}
= {(m +1)2 4+ (m—1)*r% + 2(m? — 1)rcos2n(2p + 0 + UJ)}_2
X [[(m +1)% + (m - 1)%r% + 2(m* ~ 1)rcos2m(2p + 8 + W)]

X [(m +1)2@m +1)? — 2(4m? — 5m? — 1)r2 4+ (m — 1)2(2m — 1)2r*

+ {~4m(m +1)(2m + 1)r + 4m{m — 1)(2m — 1)1} cos 2 (2 + 6 +w)
+ 4(m? = 1)r? cos? 2 (20 + 0 + W)u
= {(m+ 1)+ (m — 1) 4 2(m2 — )r cos 2n(20 + 6 + w}}—l
X |:(m +1)2(2m + 1)% - 2(4m* — 5m? — 1)r% 4+ (m — 1)*(2m — 1)%r*
+ 4mr{—(m +1)(2m +1) + (m — 1)(2m — 1)?"2} c0s 271(2¢ + 0 + w)

+ 4(m? — 1)r? cos® 2m(2¢ + 0 + w)jl .
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Let X = cos2n(2¢ + 6 + w) and we consider the function

FX) = {m+1)? + (m - D22 + 2m? - 1prx}

X [(m +1)2(2m 4+ 1)? — 2(4m* — 5m? — 1)r% + (m — 1)%(2m — 1)*r*

+ 4mr{—(m +1)(2m+1)+(m—1)(2m — 1)7"2}X+4(m2—1)r2X2} .

Then the function f is monotone decreasing on [—1,1] and

f) = {2m+ 1-(2m — 1)7“}2.

In the case that 0 < r < 1, we obtain that

|z +iy| > VF(1) =2m+1— (2m—1)r > 2.
In the case that 7 = 1 and 2¢p + 6 +w # 0 (mod 1), we obtain that

lz+iy| > V) =2m+1-(2m—-1)-1=2.
Moreover in the case that 7 = 1 and 2¢p + 0 +w = 0 (mod 1), we obtain that

' lz+iy| = V) =2m+1-(2m—1)-1=2. o

Proof of (a). It is clear.

Proof of (b). By Lemma 2.2, |a+ b| = [z +iy| > 2. In the case that 0 <r <1,
either 0 < |a] < 1 < |b] < 0o or 0 < |a] < [b] < 1 hold since |a||b] = r. If
0 < |a| £1b| £1, then

2<|a+b <la|+b] <2.
This is a contradiction and hence the situation 0 < |a] < 1 < |b| < co happens.
If |b| = 1, then

2<la+b<|a|+ bl =la] +1<2.
This is a contradiction. Therefore the equation (}) does not have double roots
and 0 < |a| <1 < |b] < o0.
Proof of (c). By assumptions, we obtain that z+iy = 2e2mi¢ and re2mi0+w) =
e2™"2¢_ Therefore the equation (1) is
) 72 _ 2621ri<pZ + e27ri~2np =0

and hence a = b = ™%,
Proof of (d). By Lemma 2.2, |a+b| = |z+iy| > 2. In the case that r = 1, either
0<lal <1< b <ooorlal =|b| =1 hold since |a||b] = 1. If |a| = [b] =1,
then

2<|a+b| < lal+ b =2.
This is a contradiction. Therefore the equation () does not have double roots
and 0 < |a| < 1 < |b] < co.
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Proof of (e). Let

u(z) = z—a z=b\  2*—(a+bz+ab
T \l-az/\1-bz) abz2—(a+bz+1

The necessary and suflicient condition that the degree of the Blaschke product
B be 2m + 1 is that the function u be not constant. So the necessary and
sufficient condition that the degree of the Blaschke product B be 1 is that the
function u be constant. In the case that r = 0, the function u is not constant
since

22 — (2m + 1)e?™%z
—(2m+ e ?rtez 41
If » # 0, then

u(z) = 1 @abz? —abla+ b)z + |abl?
T ab abz2—(a+bz+1

In the case that 0 < r < 1, the degree of the Blaschke product B is 2m + 1

since |ab] = r < 1. In the case that r = 1, we obtain that

_2m6-27ri(3<p+6+w) {6271'2'(2@—{-94-0.;) _ 1}3

m2+1+ (m? —1)cos2n(2p+ 0 +w)

abla+b)— (a+b) =

Therefore in the case that r = 1 and 29+ 6 +w # 0 (mod 1), the degree of the
Blaschke product B is 2m + 1. On the other hand, if r = 1 and 2p+ 80 +w =0
(mod 1), then

1 27i-2
u(z) = —= =" ¥
(2) ab

and the degree of the Blaschke product B is 1. It is clear that the point at
infinity is a fixed point of B with multiplier ™. Moreover it is clear that
g(€?™¥) = 0 and hence z = e®™¥ is a critical point of B, where

2mimé = m-—1 —b m—1
B2 — e _ P ) 71
@) = T ara -ty (1 “az =5 @

g(z) = abz* + {—(m +1)(@ + b) + (m — 1)ab(a + b)}zs’

and

o F {2m+ 1—(2m—)jab]® +ja+ b|2}z2
+ {—(m + 1}(a+b) + (m — 1)ab(a + 5)}2' + ab.

Finally we show that two critical points of B other than a, 1/a, b, 1/b (if m > 2)
and e2™ are in C\ T. In the case that r = 0, we obtain that

9(z) = —(m+ D)(2m + 1)e” "% (z— 82”‘*")2 .
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Therefore critical points of B are b, 1/b (if m > 2), 0, co and €2™*. In the case
that r # 0, let

echp

h(Z) =32 + 5 {Cge—Zni.2(2<p+0+w) + 086—27ri(2<p+0+w) + Cg} P
10

~27i-2(p+0+
+e (¢ W)’

where
Cs = —(m +1)32m + 1) + 2(2m* — m? — 1)r? — (m — 1)*(2m - 1)r*,
Co = (m+1)3r — (m - 1)*3,
Cio = (m+1)%r + (m — 1)%73 + 2(m? — 1)rcos 21 (2p + 0 + w).

Then we can factor r~te~2"H{0+w)g(2) as

1 . )
_”: e~ 2mi(0+w) | g(z) = (z _ 627rup)2 . h(z)
Let
274
hi(z) = e {Cge—2wi-2(2zp+0+w) + Cge2mi(2e+0+w) +C’g} 2
Co
and

hz(z) — 22 + e—2m’~2(<p+0+u).
For z € T, |ha(2)| < 2.
Lemma 2.3. |hi(2)] >2 on T.

Proof of Lemma 2.3. In the case that 0 < r < 1, we obtain that

|hl (Z)| — |C:’l | Cge—2rri-2(2<p+0+w) + 086—21ri(2<p+0+w) +Cy
10
|Cs| — 2|Co|

> 8l — a9l
|C1ol

_ =Cs —2Cy
|C1ol

> v(m,r)

on T, where

v(m,r) = {(3m —)Y(m+1)yr+ (m-—- 1)21"3}_1
X {(m +1)3@2m+ 1) — 2(m + 1)%r — 22m* — m? — 1)r?
+2(m - 1)3% + (m — 1)3(2m — 1)r4}.

Since the function r — v(m, ) is monotone decreasing on (0, 1] and v(m, 1) = 2,
we obtain that |hi(z)| > 2 on T. In the case that r =1 and 20+ 04+ w #Z 0
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(mod 1), we obtain that

Ihl (Z)l - |C9| e—27ri.2(2<p+9+w) + €§8—2m(2¢+9+w) +1
IC10] Co
G { ~27i(2-+0+w) 2 ( Cs ) —2mi(2p-+6+
= 3" * +1}+ 28 _ g g 2mi2ettw)
IClol Cg
Cy \ o 2 Cs
> i 20+0+w) 1‘ _ 18 _9
~ |Chol ¢ + Co
= Co ’6_27Ti<2<ﬁ+9+w) + 1‘2 - 4(4m* + 1)
|C1ol 3m2+1
S 3m?+1 (4(4m? +1) B &e—?wi(2¢+9+w) N 1‘2
2m? 3Im2 +1
S 3m? +1 [ 4(4m? +1) A
2m? 3Im2 +1
=2
on T. 0

By the Rouché’s theorem, the number of roots of h(z) = hi(z) + hz(z) on D
is one since |hi(2)| > 2 > lha(2)] on T and the number of roots of hi(z) on
D is one. So one of critical points of B other than a, 1/a, b, 1/b (if m > 2)
and > is in . Since critical points of a Blaschke product are symmetric
with respect to the unit circle, the other one critical point of B is in C \D. In
this case, the inverse image B~!(T) of the unit circle T is the union of T and a
figure eight 8 which crosses at z = e?™¥. Refer to Figure 1. Then Blg:8 — T
is a 2m-to-1 map and therefore Biy : T — T is a homeomorphism. d

FIGURE 1. The inverse image By ;’m('ﬂ‘) of the unit circle T.
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Remark 2.4. Two complex numbers a = a(f, ¢) and b = b(8, p) satisfy that
a(f0+1,0) = a(b,9) = a(6,p +1)

and
b(0 +1,9) = (6, p) = b(8,p +1).

2.2. Rotation numbers of Blaschke products

Let f: T — T be an orientation preserving homeomorphism and let f:R—
R be a lift of f via z > €™ which satisfies f(z +1) = f(z) + 1 for all z € R.
The lift f of f is unique up to addition of an integer constant. The rotation

number p(f) of f is defined as
fn
~ . T
p(f)=nlgr;of7§ )
which is independent of z € R. The rotation number p(f) is defined as the

residue class of p( f) modulo Z. Poincaré showed that the rotation number is
rational with denominator ¢ if and only if f has a periodic point with period

g. The following theorem is important (see [6]).

Theorem 2.5. Let F be the set of all orientation preserving homeomorphisms
from the unit circle onto itself with the topology of uniform convergence. Then
the rotation number function p : F — R/Z defined as f — p(f) is continuous.

Let a(8, ¢) and b(6, ©) be as in Theorem 2.1. We define a map I', : [0,1]® —

To(z,0,0) = < e’ — a(9, ) ) ( €27z _ (0, ) )

1-— 0,(0, S0)627”'31: 1-— b(o, So)e27riz
and a map Hy, : [0,1]* > T as

. m . m
H (ZL‘ 0 © t) _ e27rzac — 0,(9, 'z t) e2mz _ b(@, ©, t)
e 1—a(8, o, t)e2mie 1 — b(8, p, t)e2mix

where
a(0,¢,t) = (1 — t)a(8, p) + te*™
and
b0, 0,t) = (1 — t)b(8, p) + te*™%.
Note that 'y, (z,0,0) = €>™2™¢ if r = 1 and 20 + 6 + w = 0 (mod 1). The
following three lemmas play important roles in the proof of Theorem 2.9.

Lemma 2.6. A map Hp(-,0,0, -) : [0,1]2 — T is a homotopy between a loop
z = Dp(x,0,9) and a constant loop x — e2™2™% for any (0, ) € [0,1]2.

Proof. 1t is clear since Hy,(+,8,,0) = T'pi(+,0,¢) and Hy, (-, 8, p,1) = e2é2me,
a

Lemma 2.7. A map H,,(z, -,¢, -):[0,1]> = T is a homotopy between a loop
0 — Ty, (z,8,9) and a constant loop § — e272™¢ for any (z, ) € [0,1]2.
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Proof. Tt is clear since H,,(x, -, ,0) = T'yn(x, -, @) and Hy, (z, -, ¢, 1) = 2782,
O

Lemma 2.8. A map Hp(x,8, -, ) : (0,112 — T is a homotopy between a loop
o= T (z,8,0) and a loop ¢ — €2™?™% for any (z,0) € [0,1]%.

Proof. 1t is clear since H,,(x,6,,0) = [')n(2,6,-) and H,,(x,6,-,1) = e2m@2me,
0
Lemma 2.6 and Lemma 2.7 imply that

arg (T (¢ + 1,0, ¢)) = a1g (T (z, 6, 9)) = arg (T (2,0 + 1,0))

and Lemma 2.8 implies that

1 1
P mAy Vs = mAdy Vs 2m.
5 218 (Trlz, 0,0+ 1)) 5 818 (T (z,6,0)) + 2m

Theorem 2.9. Let a € [0,1] and let p = re*™ € D. Besides let a = a(6, )
and b = b(6,) be as in Theorem 2.1. Then for the Blaschke product

z—a\" [ z-b\"
B, m(z) = 527rim0 -
Q’Lp’"< )=e Z(l—&z) (1—bz> ’

Bs,.mlt: T — T is an orientation preserving homeomorphism. Moreover
(a) In the case that 0 < r < 1, there exists (8o, o) € [0,1)? such that

P(Bag.pomlT) = €.

(b) In the case thatr =1, if a +mw # 0 (mod 1), then there exists (6, o) €
[0, 1]% such that p(Bag,po,mlT) = @ and 20 + 0p +w % 0 (mod 1).

Proof. In the case that r = 1 and 29 + 6 + w = 0 (mod 1),

2rnim(2p+0) 27ri(—mw)z

Bpom(z)=e z=¢

Therefore By mlr : T — T is an orientation preserving homeomorphism and
its rotation number satisfies that p(Bg e mlr) = —mw (mod 1). In the other
cases, we consider a lift

~ 1
Bev%m(m) =mf + 7+ 2_71'. arg (Fm(m3 69 ‘P})
of Bo,ymlr: T — T via z — ¢?™*. By Lemma 2.6,
- 1 -
BoomEx+1)=md+az+1+ o arg (Com(z +1,0,9)) = Bgom(z) +1
for all z € R. This implies that By, m|r : T — T is an orientation preserv-
ing homeomorphism. Consequently the rotation number of p(Bg,,,m) is well
defined. By Lemma 2.7, we obtain that BY , ,() = Bg, ,,(z) +mn and hence

(13) p(él,%m) = p(EO,ga,m) +m.
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Moreover by Lemma 2.8, we obtain that Eg,lym(w) = B’g’o,m(x) + 2mn and
hence

(14) p(Bo,1,m) = p(Bo,o,m) + 2m.

These two equations (13) and (14) imply that

p(B11,m) = p(Boo,m) + 3m.
Therefore in the case that 0 < r < 1, there exists (6o, ¢0o) € [0, 1]*> such that

a= p(BOO,wo,mlT) = p(geo,lpo,m) (mod 1)
since the rotation number function (@, ) — p(Bg,,m|t) is continuous. In the
case that r = 1, if 290+ 0 +w =0 (mod 1), then p(By,y m|T) = —mw (mod 1).
Hence if o +mw # 0 (mod 1), then there exists (6o, o) € [0, 1]? such that

a = p(Bog,po,mlT) = p(EG’o,Lpo,m) (mod 1)
and 2pp + 6o +w # 0 (mod 1). O

Remark 2.10. By Theorem 2.1, the degree of By, ,q,m is 2m + 1.

3. Rational functions with Siegel disks

In this section, we show Theorem 1.5. Let f : R — R be a homeomorphism.
If there exists k£ > 1 such that

1_|fz+t) — f(@)

k= f(z) - flz—1t)
for all z € R and all ¢t > 0, then f is called k-quasisymmetric. A homeomor-
phism h : T — T is k-quasisymmetric if its lift h:R—Ris k-quasisymmetric.
By the theorem of Beurling and Ahlfors, any k-quasisymmetric homeomor-
phism f : R — R is extended to a K-quasiconformal map F : H — H, where
H is the upper half plain (More precisely F : C — C). The dilatation K
of F depends only on k. Therefore if a homeomorphism A : T — T is k-
quasisymmetric, then we can extend h to a K-quasiconformal map H : D — D
whose dilatation depends only on k.

<k

Theorem 3.1 (Herman—éwi@tek). The rotation number p(f) of a real analytic
orientation preserving homeomorphism f : T — T is of bounded type if and only
if f is quasisymmetrically linearizable, that is, there exits a quasisymmetric
homeomorphism h : T — T such that ho f o h™1(z) = e*™*#(f) 5,

Recall that
z—a\"( z=b\"
B — 2nimé _
o.0m(2) = € z(l—&z) <1—bz)

z+A\"
puz+1) °

and

Frpum(z)=2 (
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ro=0 r=1405

r=0.9 r=1

FIGURE 2. Golden Siegel disks of F 1 centered at the origin,
where \ = e2m(V5-1)/2 and g = re2m(V5-1/2 In the case
that r == 1, the point at infinity is the center of another golden
Siegel disk.

Proof of Theorem 1.5. By Theorem 2.9, there exist (8, @) € [0, 1}? such that the
degree of By, is 2m + 1 and p(Bg,y,m|1) = a. By Theorem 3.1, there exists
a quasisymmetric homeomorphism A : T — T such that Ao By, mlrok~1(z) =
Ra(2) = 2™ since « is of bounded type. By the theorem of Beurling and
Ahlfors, h has a quasiconformal extension H : D — D with H(0) = 0. We
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define a new map By, m as

B, . — | Boom on C\D,
e H'oR,oH onD.

‘The map By, ,,m is quasiregular on C since T is an analytic curve. Moreover
Bo,,,m is a degree m + 1 branched covering of C. We define a conformal
structure oy, , m as

H*(ay) on D,
o0 = (B3 pm) oH*(00) onB;7, (D)\DforallneN,
00 on C\U;Z, By . (D),

where 0y is the standard conformal structure on C. The conformal structure
06,p,m 18 invariant under By ,, ,,, and its maximal dilatation is the dilatation of
H since H is quasiconformal and By ,,m is holomorphic. By the measurable
E.iema/r\m mapping theorem, there exists a quasiconformal homeomorphism ¥ :
C — C such that ¥*o¢ = 09,,,m. Therefore ¥ o Bg ,m o ¥ is a rational
map of degree m + 1. We normalize ¥ = ¥; by ¥;(0) = 0, ¥;(b) = —A; and
¥;(00) = oo, where X; = e2™He+)/™ for j € {1,...,m}.

Lemma 3.2. If u # 0, then there exists pu; with p7* = p™ such that

F>‘j R = \Il] o %gﬂpym ° \I,]—l'
Proof of Lemma 3.2. Define §; as §; = —¥;(1/a). Note that A; # £; since such
V¥; is unique. Since orders of zeros and poles are invariant under conjugation,
we obtain that

_ z+2\"
q’jo%e,w,moq’jl(z) =12 <z+£]) .
j

Since multipliers of fixed points are also invariant under conjugation, we obtain
that

™ ‘
(15) (\I’J (o} %Q,Lp,m [¢] \Il;,'l)’ (0) — ,’Z_mJ — e27rza
]
and
1 1 -
(16) R

(¥ 0Bg,p,m 0 \Ilj_l)l (00) o
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By the equations (15) and (16), we obtain that ({;u)™ = 1. Then there exists
an m-th root of unity v; such that &; = v;/u. Therefore

V0B pm o Uit(z) = z (L&) _, (fLJ_)

pm\z+ v/ wz +v;
z z+ \" z+,\j)m
=7 7) =4\ =) =Pummn)
ij ((M/Uj)z'i’l) Z(sz+1 )‘J#‘J)m( )
where U = N/V] q

Let p; = 0 forall j € {1,...,m} if p = 0. Tt is easy to check that the
pairs {(Aj, p;)}7L, satisfies (i) and (ii). The map F,,,;,m has a Siegel disk
A = V;(D) with a critical point ¥;(e*™*?) € A. Moreover A = ¥,;(T) is a
quasicircle since ¥; is quasiconformal. u

Proof of Corollary 1.6. Let Z(z) = 1/z. Then F, i, ;m =Z 0 Fy; x;,moZ. Let
A and A be Siegel disks of Fy; ,,; m centered at the origin and the point at
infinity respectively. By Theorem 1.5, the boundary of A contains a critical
point of Fy; ,;m. On the other hand, Z(A4) is the Siegel disk of Fi; x; m
centered at the origin. By Theorem 1.5, the boundary of Z(As) contains a
critical point of Fj,; x,.m. Therefore the boundary of A, contains a critical
point of Fi; 4 m. O
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