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FIBRED RIEMANNIAN SPACE WITH
ALMOST COMPLEX STRUCTURES

JiNn Hyuk CHol, ILwoN KANG, BYUNG HAK KiM, AND YANGMI SHIN

ABSTRACT. We study fibred Riemannian spaces with almost complex
structures which are induced by the almost complex structure or the
almost contact structure on the base and fibre. We show that if the total
space is a complex space form, then the total space is locally Euclidean.
Moreover, we deal with the fibred Riemannian space with various Kaehle-
rian structures.

1. Introduction

The study of fibred space goes back to the unified field theory in a 5-dimen-
sional Riemannian space due to T. Kaluza and O. Klein. Fibred Riemannian
space was first considered by Y. Muto [10] and treated by B. L. Reinhart [14]
in the name of foliated Riemannian manifolds. B. O’Neill [13] called such a
foliation a Riemannian submersion and gave its structure equations and at the
almost same time K. Yano and S. Ishihara [21] developed an extensive theory
of fibred Riemannian space. These work were systematically reported in [5].
M. Ako [1], T. Okubo [12] and B. Watson [17, 18] studied fibred space with
almost complex or almost Hermitian structure.

In connection with almost contact structures, S. Tanno [15] and Y. Ogawa
[11] investigated principal bundles over almost complex spaces with a 1-dimen-
sional structure group. Generalizing Calabi-Eikmann’s example, S. Morimoto
[9] defined an almost complex structure in the product of two almost contact
spaces and obtained a condition on the normality, and S. 1. Goldberg and K.
Yano [4] studied similar properties for the product of two framed manifolds.

On the other hand Tashiro and Kim [16] have studied fibred Riemannian
spaces with almost Hermitian or almost contact metric structure. They applied
these results to the study of tangent bundles of Riemannian spaces. Kim [6,

Received July 2, 2007.

2000 Mathematics Subject Classification. Primary 53B35, 53C55, 53D15.

Key words and phrases. fibred Riemannian space, almost complex structure, Kaehlerian
space, complex space forms.

This work was supported by the Research Grant 2001 of Kyung Hee University and Korea

Research Council of Fundamental Science & Technology (KRCF) Grant No. C-RESEARCH-
2006-11 NIMS.

©2009 The Korean Mathematical Society
171



172 JIN HYUK CHOI, ILWON KANG, BYUNG HAK KIM, AND YANGMI SHIN.

7] has studied fibred Riemannian spaces with various geometric structures and
has constructed model space and counter examples.

In this point of view, the purpose of this paper is to study the fibred Rie-
mannian space with almost complex structure which is naturally induced by
the almost complex structures or an almost contact structures for the base
space and each fibre. We investigate whether the base or a fibre inherits the
same structure from the total space endowed with a suitable structure. We
show that if the total space is nearly Kaehlerian, the normal connection of
each fibre vanishes and a fibre is a minimal submanifold of the total space. We
also obtain a condition for the base and fibre to be Einstein when the total
space is Einstein. Moreover, we shall deal with the fibred Riemannian space
with various Kaehlerian structures and complex space forms.

2. Fibred Riemannian space

Let {M, B, §, 7} be a fibred Riemannian space, that is, M an m-dimensional
total space with projectable Riemannian metric §, B an n-dimensional base
space, and m : M — B a projection with maximal rank n. The fibre passing
through a point P € M is denoted by F(P) or generally F, which is a p-
dimensional submanifold of M, where p=m —n.

Throughout this paper, manifolds, geometric objects and mappings are sup-
posed to be of C™ class and manifolds are assumed to be connected. Also,
unless stated otherwise, the ranges of indices are as follows;

AB,C,D,E:1,2,...,m,
h,t,5,k,0:1,2,...,m,
a,bc,de:1,2,...,n

Y, z,wu:n+1,...,n+p=m.

If we take coordinate neighborhoods (U, z*) in M and (U, z%) in B such
that #(U)=U, then the projection 7 is expressed by equations

(2.1) x® = x%(z")

With Jacobian ( 2.} of maximum rank n. There is a local coordinate system

“in FNU # @ (x“,g””) form a coordmate system in U and each fibre F(P)
at Pin FNU is parametrized as 2" = z"(z® ,¥7). Then we can choose a local
frame (E,,C,) and its dual frame (E®,C?) in U, where the components of E¢
and C* are given by

a 4
gii and  C% = giiﬁ.

The vector fields E, span the horizontal distribution and C, the tangent
space of each fibre. The metric tensor g in the base space B is given by

(2.3) 9o = §(Ee, Ev)

(2.2) E® =
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and the induced metric tensor g in each fibre F' by
(2‘4) Gzy = g(Cﬁvv Cy)

We write (Eg) for the frame (Ej,C;) in all, if necessary. Let h = (hgy®)
be components of the second fundamental tensor with respect to the normal
vector E, and L = (L") the normal connection of each fibre F. Then we
have

(2.5) hzya = hyza and L™ 4+ Lyc” = 0.

Denoting by V the Riemannian connection of the total space M, we have
the following equations.

(26.1) V;E*, =T 4 E;°E", — Ly"E;°C"; + Ly*,C;YE"y — by ", C;¥YCe,

(2.6.2) ijhw = LcamEjCEha —(hs¥, — Pczy)chChy + hzzaCszha
+T,.YC*Chy,

(2.6.3) 6jEia = —FcbancEib — Lcaz(E]‘CCiz + ijEic) - hyzaijCix,

6]'01@ = chxchEib + (hyzc - Pcyx)chciy

(2.6.4) _
+ k" O BT, " Cy* CiY,

where I',;* are connection coefficients of the projection V = p@ in B, f‘zyz

those of the induced connection V in F, LSy = chwgb"gmy, hy®s = hy2*3°" gba

and P, are local functions in U defined by [Ep, Cy] = Poy*Cy.

From (2.6.1), we see that [E,, Ep] = —2L*Cy, and so the horizontal distri-
bution is integrable if and only if the structure tensor L vanishes identically.

Let v be a curve through a point P in the base space B and X be the tangent
vector field of -y. There is a unique curve % through a point P € 7~'(P) such
that its tangent vector field is the lift X*. The curve 7 is called the horizontal
lift of ~ passing through P. If a curve ~ joins points P and @ in B, then the
horizontal lifts of v through all points of the fibre F(P) define a fibre mapping
., : F(P) — F(Q), called the horizontal mapping covering ~y.

If the horizontal mapping covering any curve in B is an isometry of fi-
bres, then {M, B, g, 7} is called a fibred Riemannian space with isometric fi-
bres. A necessary and sufficient condition for M to have isometric fibres is
(Lxe gV)V = 0 for any vector field X in B, or equivalently hz,® = 0. Here and
hereafter A7 and AY indicate the horizontal and vertical parts of A respec-
tively. The model space of the fibred Riemannian space with isometric fibre
can be seen in [3].

If the horizontal mapping covering any curve in B is conformal mapping of
fibres, then {M, B, g, 7} is called a fibred Riemannian space with conformal
fibres. A condition for M to have conformal fibres is hzy® = §uyA®, where
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A = A®E, is the mean curvature vector along each fibre in M. The following
theorem is well known [8].

Theorem 2.1. If the normal connection L = (L) and second fundamental
form h = (hgy®) vanish identically in a fibred Riemannian space, then the fibred
space 1s locally the Riemannian product of the base and a fibre.

‘The curvature tensor of a fibred Riemannian space M is defined by
@.7) RENZ =VgV3Z - V9937 - Viz0/2
for any vector fields X, ¥ and Z in M. We put
(2.8) K(Ep,Ec)Ep = Kpcp*Ea = Kpcs®Ee + Kpcs®C,

then K pop? are components of the curvature tensor with respect to the~basis
(EB). Denoting the components of the curvature tensor in (U, z?) by Ky;:",
we have the relations

(2.9) Kpcp? = Kiji"EF pEIcE g Ep ™.
Substituting (2.6) into the definition (2.7) of the curvature tensor, we have
the structure equations of a fibred Riemannian space as follows [2, 5, 7, 13, 16]:

(2.10) Kai® = Kacv® — La®sLey® + Le*s Lay® + 2Lac® Lo,

(2.11) Kyep™ = —*VgLep® +* VoLay®™ — 2Lac’hy ",

2.12) Kaey™ = *Vehy®a —* Vahy®c + 2V Lge® + Lac”
Lcfy — Lee® Loy — ha"ahy®c + hy"chy*

(2.13) Kap® =* VaLp®, — La®h:"s + Lap®hoz® — La®sh:"4,

(2.14) Kip® = =*Vah,"p +** VoLap® + La®»Let” + h¥ ahy®s,

(2.15) Kup® = Loyp® + hz"bhya” — hy"phas®,

(2.16) Koye® = Viohye® —** Vyh,ut,

(2.17) I?zy;“’ = Koye¥ + hoo®hy¥e — hya®h."e,

where we have put

(2.18) Kact® = 0alp® — OcTap® +TaeTep® — Tee T an®,

(2.19) *VaLey” = 04Ley”™ —T4c®Ley” — Tap®Lee” + Qay” Lev?

(2.20) *VaLc®y = 04Lc%y + Tae® Lo’y —Tac®Le®y — Quay” Lz,

(2.21) *Vihay® = 0ahzy® + Tac®hey® — Qaz"hay® — Qay"haa,

(2'22) *vdhymb = adhyzb - deehyxe + dezhyzb - Qdyzhszy
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Q" being defined by

T _p o= x
Qcy —*Icy -hy ¢

and

(2.23) *VyLao® = 0yLev” + Ty:"Lev” — LefyLeb®™ — Ly®y Lee”,
(2.24) *VyLy®s = 0yLp"s — Tyo* Ly, + Le®y Loy — Ly Lo,
(2.25) YV ahye® = 0:hys® — Ty huse® — Toz¥Ryw® + Le® thye®,
(2.26) P Vahy"y = 0:hy "y + Loy ™y — DoV ha™s — Lo shy e,
(2.27) Lyep® = 0y L%y — 0:Lp%y + Le®wLle®s — Le® o 1n"y,

(2.28) Koy = 0Ty — 0,T.0™ + T VT — Ty ¥Taa®.

Among these, the functions Ky.;® are projectable in U and its projections,
denoted by K% too, are components of the curvature tensor of the base space
{B.g}. On each fibre F, the functions K,,,* are components of the curvature
tensor of the induced Riemannian metric g and Ly those of the curvature
tensor of the normal connection of F in M. The components K DC g4 satisfy the
same algebraic equations as those K ki satisfy. Denote by K¢ components
of the Ricci tensor of {M, §} with respect to the basis (Eg) in U, and by K
and K,, components of the Ricci tensors of the base space {B,g} in (U,z%)
and each fibre {F, g} in (U, y") respectively. Then we have

(2'29) f{cb = Kep — 2Lcemee:c h hymchxyb + %(*vchma:b +* vbhx:wc)a
(2.30) Kb = Viohy¥y = Vyho¥y +* VeLy®s — 2hY e L%y,
(2'31) kyw = “yz - hyxehzze —+* vehyxe - LaeyLeax-

Denoting by K,K and K the scalar curvatures of M , B and each fibre F
respectively, we have the relation

(2.32) K = KX + K — Lepu L% — hygoh¥® — hyY by " + 2°Voh, .

3. Almost complex manifold

An almost complex structure on a Riemannian manifold M is a linear en-
domorphism J of TM such that J? = —I, where I stands for the identity
transformation of TM. A Riemannian manifold M with an almost complex
structure is called an almost complex manifold. Since J? = —I, we easily see
that every almost complex manifold is of even dimension.

A Hermitian metric on an almost complex manifold M is a Riemannian met-
ric g which is invariant under the action of the almost complex structure J, i.e.,
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9(JX,JY) = ¢g(X,Y) for any vector fields X and Y on M. A Hermitian met-
ric thus defines a Hermitian inner product on each tangent space T, (M) with
respect to the complex structure defined by J. An almost complex manifold
(resp. a complex manifold) with a Hermitian metric is called an almost Her-
mitian manifold (resp. a Hermitian manifold). That is, an almost Hermitian
manifold is a triple (M, g, J), where (M, g) is a Riemannian manifold and

(i) J is a tensor field of type (1, 1) on M satisfying Jo J = —1I,
(i) g is a Hermitian metric of M, i.e., g(JX,JY) = g(X,Y) for all vector
fields X,Y on M.

The fundamental 2-form ® of an almost Hermitian manifold M is defined
by ®(X,Y) = g(JX,Y). A Hermitian metric on an almost complex manifold
is called a Kaehler metric if the fundamental 2-form is closed. An almost
complex manifold with a Kaehler metric is called an almost Kaehler manifold
[8, 16, 20]. An almost Hermitian manifold M with almost complex structure J
is called a nearly Kaehler manifold (or almost Tachibana manifold, or K-space)
if (VxJ)Y + (VyJ)X = 0 for any vector fields X and Y on M or equivalently
(VxJ) = 0 for every vector field X on M.

The complex torsion or Nijenhuis tensor N of an almost complex structure
J is the tensor field of type (1,2) given by

(3.1) N(X,Y) = [X,Y] + J[JX,Y] + J[X,JY] - [JX, JY]

for every vector fields X,Y on M.

A well-known theorem of Newlander and Nirenberg [8, 9, 20] states that
J is the almost complex structure associated to a complex structure on M if
and only if the Nijenhuis tensor of J vanishes, in which case we say that J is
integrable.

A complex manifold with a Kaehler metric is called a Kaehler manifold. The
Kaehler manifolds are characterized by VxJ = 0 for every vector field X on
M.

4. Fibred Riemannian space with almost complex structure

In this chapter, we investigate the fibred Riemannian space with almost
complex structures induced by the almost complex structure A in the base
space and H in each fibre. Let us put

(4.1) Jit = AELE, 4 HYCCY,.

Then we can see that J2 = —I and the horizontal and vertical subspaces are
invariant by J. Conversely we can easily see that A2 = —I and H? = —I due
to J? = —1I.

Theorem 4.1. Let B and F be almost complex manifolds. Then the fibred
Riemannian space M admits an almost complex structure.
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Using equations (2.6.1)-(2.6.4), and (4.1), we obtain the following equations.

(4.2.1)
(4.2.2)
(4.2.3)
(4.2.4)
(4.2.5)
(4.2.6)
(4.2.7)

(4.2.8)

(ViJ;HEF EI B¢ = VA,
(Vid;)E¥ B9 4C* = Leg® Hy? — Ley*Ad®,
(Vidj)EF .07, Ei® = Lo Hy® — Lol As®,
(Vi) EF 7, CF = Qoy* Hy? — Qeuw?H,y?,
(ViJ;)C* E;2Ei® = L°, A8 — Lif. A5,
(Vi )Ck, BT 4Ci# = hy® gHy* — hy®3Ad,
(Vidi)CF.CI W Ei® = hay Hy¥ — hau® Ae,

(Vi J;HC*, 07,0 =V Hy .

From the equations (4.2.1)-{4.2.8), we get

(4.3.1)

(4.3.2)

(4.3.3)
(4.3.4)
(4.3.5)

(4.3.6)

(4.3.7)

(4.3.8)

Let M be almost Kaehlerian, then the fundamental 2-form ®(X,Y’)

(<7ij¢ + 6J‘Jik + ﬁika)EkcEjdEie
= VcAde + VdAec + VeAcd>

(Vidji + Vdi + Vidij)E* BT 4CF, = 2L 4" Ha,
(Vidji + Vi + Vidig) E*.CI, Ely = 2Lcq, H.",

(@kjji + @sz‘k + @?;ka)EkCCjoiw
= Qcyszy - chyHyw + hzycHwy + hy® cHyz,

(Vidji + Vidix + Vidy)C* . EI Etq = Log®Haz + Laca H:®,

(?k-]ji + @sz‘k + 6¢ka)CkZEjCCiw

= h."How + Qcyszy - chyHyZ + hwycszy
(Vidji + VJi + ViJi )C*.C7 Y,

= hzycHwy + hwcha:z + Qcyszy - chyHywa
(€7ij¢ + @jjg’k + ﬁéka)Cszijiy

= Vszy + VwHyz + Vszw.

&

9(JX,Y) is closed, i.e.,ViJ; + V;Jix + ViJi; = 0. Hence we see that L = 0
from the equations (4.3.2) and the base space and each fibre are almost Kaehler
manifolds from the equations (4.3.1) and (4.3.8) respectively. Therefore we can

state
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Theorem 4.2. If a fibred almost Hermitian space {M, B, §, w}with invariant

fibers is almost Kaehlerian, then B and F are almost Kaehlerian and L = 0.
Using the equations (4.2.1)-(4.2.8), we get

(44.1)  (ViJji + V;Ji)E¥ B 4B, = V. Age + ViAce,

(4.4.2) (ﬁiji + ﬁiji)EkcEijiz = '_‘chzAdb - LdbzAcb’
(44.3)  (ViJji+ V;Jis)E*.CIE'e = LeogHy® — 2Ly Apg + LacwAd,

(Vidji + V;Ju) EF C7,CF,

(4.4.4) ,
= Qcyszy - chyHyz + hycHy, — hwszc y

(445) (6]9(]3'1‘ + 6j']ki)C'k'wEJ‘jc-Eid = Ledece - 2LcewAed + Lcdeww7

(6191]1',' + 6iji)CkijdCiz

(4.4.6) j : ) .
= hy dHz, — hyszd + dezHy - Qdy szv

(4.4.7) (€7ij1‘ + f7iji)CkijwEid = hzdewz - Zhywabd + hwdeyz,
(44.8)  (Vidji + VjJii)C*,CI,Ct, = Vo Hy + Vy Hoy.

Now we suppose that the total space M is nearly Kaehlerian. Then the right
hand sides of the equations (4.4.1)-(4.4.8) vanish identically.

From the equations (4.4.1) and (4.4.8), we see that the base space and each
fibre are nearly Kaehlerian. Using the skew symmetry of L and the equation
(4.4.2), we get

(4.4.9) LepzAd® + Lap A = 0.
The equations (4.4.3) and (4.4.9) imply
(4.4.10) LeqwAe? + Leeo Hy® = 0.
From equations (4.4.9) and (4.4.10), we get
(4.4.11) LeawAc® = LfwAed + LegeHuw® — LefwAca = 0.

Hence we get L.%,,Aeq = 0, which implies L = 0. By contracting indices y
and w in the equation (4.4.7), we obtain h® = h,,* = 0. Now each fibre F is a
minimal submanifold of M. Thus we can state

Theorem 4.3. Let {M, B, g, 7} be a fibred almost Hermitian space with almost
complex structure J and invariant fibres. If M is nearly Kaehlerian, then B
and F are nearly Kaehlerian, L = 0 and F is a minimal submanifold of M.
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The Nijenhuis tensor defined by equation (3.1) can be rewritten as
(4.5) Nt = JF(@0e i — 0, ™) — J# (0 ;" — 0; 7).

Using the equation (4.1.1)-(4.1.4), and (4.5), we get
(451)  Ng® = JF0pd® — 0 Jx) — Jp*(0rJ® — 0.Jx%) = Nap®,

c.ry = Jck(akjmy - BxJky) - Jzk(aﬁch - achy)

(4.5.2)
= Acd(adey) -+ sz(acsz)a

(453)  Ngy* = LROkJy® - 8,Jk%) — J,* (0ro® — 02 Jk%) = Ngy?,
and all other components vanish. An almost complex structure J is integrable

if and only if Nigenhuis tensor of J vanish. From equations (4.5.1)-{4.5.3), we
get the following,

Theorem 4.4. An almost complex structure J on the fibred Riemannian space
{M, B, §,n} is integrable if and only if the almost complex structures A on B
and H on F are integrable and

(46) Acd(adey> + H.* (8(:sz) =0.

If the total space is Kaehlerian, then VJ = 0. Since a Kachler manifold is
nearly Kaehlerian, we see that L = 0 and F' is a minimal submanifold of M
from Theorem 4.3. Moreover, the equations (4.2.1)-(4.2.8) and VJ = 0 imply
that B and F are Kaehlerian. Thus we can state

Theorem 4.5. If a fibred almost Hermitian space {M,B,§,7} with almost
complez structure J and invariant fibres is Kaehlerian, then B and F are
Kaehlerian, L = 0 and each fibre F is a minimal submanifold of M and the
equation (4.6) holds.

Let M be a Kaehler Einstein manifold. Then

- K
(4.7) Kji = —gji
and K is a constant if m > 2.

Using equations (2.26)-(2.33), and (4.7), we have

(48.1) ch = ch - hyxchfcyba
(4.8.2) T phy Ty = 0,

_ K_
(483) Ky;z = 'm-gya; - vehywe7
(4.8.4) K=K+K-|h)

The equations (4.8.1), (4.8.3), and (4.8.4) imply
(4.8.5) rK —nK —r||h}? = 0.
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These equations lead to the following theorem.

Theorem 4.6. If a fibred Kaehler space is Einstein, then its base space B is
Einstein if and only if h," chy®s = Agew for some .

Next, if each fibre is Einstein, then equation (4.8.3) implies
K K

(4.8.6) TQW = Egyx —* Vehys®,
which, together with the equation (4.8.5), implies
(4.8.7) *Vehys® = 0.

The converse is evident. Hence we have

Theorem 4.7. If o fibred Kaehler space is Einstein, then the fibre F is Einstein
if and only if *Vhyz® = 0.

It is well known that in an almost Hermitian manifold the vector fields X
and JX are orthogonal. It follows that, at a point p, the vectors X and JX
determine a 2-dimensional subspace and hence a sectional curvature defined
by this subspace. This is called the holomorphic sectional curvature at p in
the direction X. If X is a unit vector, the holomorphic sectional curvature is
given by R(X, JX, X, JX). It may happen that at the point p the holomorphic
sectional curvature is independent of the vector X. In that case, we say that
the manifold has constant holomorphic sectional curvature at p. Indeed, we
have a result which is analogous to Schur’s theorem in the case of real Rie-
mannian manifolds, namely, if the holomorphic sectional curvature is constant
at each point p of a Kaehler manifold, then it has the same constant value over
the whole manifold. Such a manifold is said to have a constant holomorphic
sectional curvature or it is said to be a complex space form.

The following theorem is well known [19, 20].

Theorem 4.8. A Kaehler manifold M has a constant holomorphic sectional
curvature c if and only if

(4.9) Kiji" = £[0k"g5i — 8;"gri + T Jji — Ji"Js — 2Tk JiM).
Here non-trivial components of Ky;;" are

(4.10.1) Kgep® = $[64°9ch — 0c%gap — Ac®Aap + Ag®Ach — 2A4:Ap°],
(4.10.2) Kioy® = —SAacH,”,

(4.10.3) kdybz = %[""&yzvgdb - nyAdb}:

(4.10.4) K.p® = $[—H.y A%,

(4.10.5) K.y2% =0,

(410.6)  K.yo® = £[6.%gye — 6, ze + H. W Hyy — H,® H, — 2H, H, ™).
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Since M is Kaehlerian, L = 0 and F is a minimal submanifold of M. Using
these facts and the equations (2.10)-(2.17), we get

(4.11.1) [0k g5 — 8;" gk + JuPTji = TP ks — 2015 "] = Kaos®,
(4.11.2) — £AacHy® =* Vehy® s —* Vahy®c — hu®ahy®c + ho®chy a,
(4.11.3) [~8y%gap — Hy® Aap) =* Vahy®p + hy® ahus,

(4.11.4) [~ Hoy Ap®] = ha¥bhyn® — hyphuw®

(4.11.5) 0 =" Vohye =** Vyh,,o,

wite) 21879y = 0,92z + H." Hyp — H, " oy — 2H. H|

= R'zymw + hzazghywe - hymehfzwe-
Contracting the indices z and z in the equation (4.11.6), we obtain
(4.12) Kay + hayhe®e = 2(?‘ + 1)Fey

using the minimality of the fibred Kaehler space. By taking the skew symmetric
part of the equation {4.12), we get

(413) hzyehmze - hzmehyza = 0.

The equations (4.10.4) and (4.13) imply cH,,Ap* =0, ie., ¢ = 0. Hence we
have

Theorem 4.9. If a fibred Kaehler space {M, B, §,n} with invariant fibre has
o constant holomorphic sectional curvature, then M is locally Euclidean.

5. Fibred Kaehlerian space of another type

In this chapter, we consider a fibred Riemannian space M such that the
base space B and each fibre F' are almost contact spaces with almost contact
structures (¢, M, &%) and (P, 7, EY) respectively. The structure (¢,7n,£)
satisfies ¢? = — I +7QE, ¢(§) =0, n® ¢ =0, n(¢) = 1, where I is the identity
map. If we define

(5.1) Jit = 0B By — mEYECY + T C Bl + 6,YC;°Cy,

then we can easily see that J? = —J and that we can construct an almost
Hermitian structure with almost complex structure J on the total space M,
which will be called fibred a almost Hermitian space. Thus we can state

Proposition 5.1. Let B and F be almost contact metric spaces. Then the
fibred Riemannian space M admits an almost Hermitian structure.
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The equation (5.1) is rewritten as
(5.2) J Bl q = ¢4°E'q — na€¥C'y,
(5.3) Ji'C7, = 0.8 Ey + ¢.YCy.
Components of the covariant derivative V.J with respect to the frame (Ep)

= (Es, Cy) are given by (V;Jin)E/cE'gE" 4 and we can obtain the following
expressions by means of (2.6), (5.2), and (5.3).

(5-4-1) (6iji)EkcEjdEie = vcd’de + Lcdxﬁxrle - Lceyndé_ya
(542) (6iji)EkcEijiz = —(Vcnd)'f]z - nd(*vcﬁz) + Lcdw(i—gmz - Lcazd)daa

(543) (6iji)Echszid = (*Vcﬁz)'f]d + (vcnd)ﬁz + Lcdyd—)zy - Lcaz¢ad7
(5.4.4) (ViJji)E*.C?,C% =* Vedrw — LeawTob® + Le® 0uih + (Vaihw)es

(5-4-5) (6iji)CszjdEie =** Vz(ﬁde - ndgyhzye + hzydﬁynea

(5.4.6) (ViT)O* Bl aC
= - (**Vznd)f]w - ndﬁzﬁw + hzydéyw - hzwa¢da7
(5.4.7) (Vi) O 07 '

= (‘_727_7x)77c + ﬁz(**vznc) + hzycq-szy - hzzb¢bcy

(548) (@iji)Cszj:rCiy = vzq_ﬁalc’y + hzwbnb"_h) - hzybfbﬁz'

Suppose that the induced structure J on M is Kaehlerian, i.e., 6iji =0.
Then we get

(6.5.1) Vedde + Lea®MeNe — Lee* Mg = 0,

(5.5.2) (Vena)iz + (*Veil)na — Lea®$oz + Leazpa® =0,
(5.5.3) (*Vafiw)a + (Vo) + howada® — ho¥abyw =0,
(5.5.4) 'V abay + hao"oily — ey Pneil = 0.

If the base space B is a contact manifold, i.e., 20 = Vcmp — Va7, then
transvecting (5.5.2) with 77, we have

(5.6) 2¢cd = (Ldaz¢ca s Lcaz¢da)ﬁz'
Transvecting (5.6) with ¢.°, we obtain
2(_gde + ndne) = (“Lcazqsdad’ec - Ldez)ﬁz + Ldaznane-

From this equation, we can see that n = 1. Therefore we have
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Theorem 5.2. Let M be a fibred Kaehlerian manifold and the base space B a
contact manifold. Then the dimension of B should be one.

If we assume that M is a Kaehlerian space with conformal fibres, i.e., hzy® =
Gzyh®, then transvecting (5.5.3) with n¢,

(57) **vzr_]w + (hdnd)qgmz =0.
From the equations (5.5.4) and (5.7) we have,

Theorem 5.3. Let M be a fibred Kaehlerian manifold with conformal fibres.
Then the manifold F is cosymplectic if and only if hgn® =0.

If we assume that M is a Kaehlerian space, then transvecting (5.5.2) with
77 gives

(58) Venag + Lcazﬁz¢da =0.
Using (5.5.1) and (5.8), we get

Theorem 5.4. Let M be a fibred Kaehlerian manifold. Then the manifold B
is cosymplectic if and only if LQ 7 =0.

If we assume that the total space M is a Kaehlerian manifold of constant
holomorphic sectional curvature ¢, then the equations (2.10)-(2.17) turn to

C
Ky = Z[(sdagcb —8.%gap + cbPa” — Papdc” — 20acPp”)

(5.9.1)
+ Lg%cLep® — Le®eLap® — 2L4.° Ly°,
*vdLbaz - Ldaehzg + Ldbehzsa - Lbaehzfj

(5.9.2) ¢ . . .

= Z(¢d 726p + dapN=£° + 266 na€>),
(593) szba = —%((Z_Swz¢ba + hzebhwea - hwebhzea),
(594) **vwhzya —* Vzhwya = %(’F]wq—syz - ﬁzd_)yw - 2$zwﬁy)§a’

7% T c T~ T = T n Iz - 1z
(5 9 5) Kyzy® = Z(aw Gzy — d; Juy T PayPu”™ — Puy®.” — 2¢wz¢y )

- hwyehzme + hzyehwme

by means of (4.9). If M have conformal fibres, then the equation (5.9.4) is
reduced to

= *k a = *k a c _ - = 7 n = a
(5'10) gzy( Vuh ) - gwy( V.h ) = _(nw¢)yz - 77z¢yw - 2¢zw"7y)§ .
4
~ Transvecting g*¥ to (5.10), it is reduced to
(5.11) (p— 1)**Vuh® = 0.

Hence the mean curvature vector is parallel with respect to the normal
connection along each fibre if p > 1. Moreover, we get ¢ = 0 from (5.10) and
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(5.11), that is, M is locally Euclidean. Hence the equations (5.9.1), (5.9.2),
(5.9.3), and (5.9.5) are reduced to

(5.12.1) Kaep® = Lg®sLep”™ — Lo Lap”™ — 2L4c" Lp® s
(5.12.2) *VaLta® = Lpa*ht — Lap*ha + Lg*ha,
(5.12.3) Lyn® =0,

(5.12.4) Kuway® = he |1? (§ey0u” — Guy0:7)-

Thus we have

Theorem 5.5. Let M be a fibred Kaehlerian manifold with conformal fibres
where p > 1. If the induced almost complex structure J defined by (5.1) is
Kaehlerian one of constant holomorphic sectional curvature, then we have

(a) M is locally Euclidean,

(b) the base space B has the curvature tensor of the form (5.12.1),

(c) each fibre is a space of constant curvature,

(d) the mean curvature vector is parallel with respect to the normal con-
nection along each fibre,

(e) the scalar curvature of base space is equal to K = 3||La%||?,

(f) the scalar curvature of each fibre is equal to p(p — 1)|||k.]||*.
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