SOME GEOMETRIC PROPERTY OF BANACH SPACES-PROPERTY $\left(C_{k}\right)$

Chongsung Lee and Kyugeun Cho*

Abstract

In this paper, we define property $\left(C_{k}\right)$ and show that property $\left(C_{k}\right)$ implies property $\left(C_{k+1}\right)$. The converse does not hold. Moreover, we prove that property $\left(C_{k}\right)$ implies the Banach-Saks property.

1. Introduction

Let $(X,\|\cdot\|)$ be a real Banach space. We denote the dual of X as X^{*} and the second dual of X as $X^{* *}$ respectively.

By B_{X} and S_{X}, we denote the closed unit ball and the unit sphere of X, respectively. For any subset A of X by $\operatorname{span}\{A\}$ we denote the set of all linear combinations of vectors of $A .(X,\|\cdot\|)$ is said to be reflexive if the natural embedding maps X onto $X^{* *}$.
$(X,\|\cdot\|)$ is said to be uniformly convex (UC) if for all $\epsilon>0$, there exists a $\delta(\epsilon)<1$ such that for $x, y \in B_{X}$ with $\|x-y\| \geq \epsilon$,

$$
\left\|\frac{1}{2}(x+y)\right\| \leq \delta(\epsilon)
$$

A Banach space is said to have the Banach-Saks property if any bounded sequence in the space admits a subsequence whose arithmetic means converges in norm. In 1930, S. Banach and S. Saks[2] showed that every bounded sequence in $L_{p}[0,1], 1<p<\infty$, has a subsequence with arithmetic means converging in norm. J. Schreier [7] showed that $C[0,1]$ does not have the Banach-Saks property. T. Nishiura and D. Waterman [6] proved that the Banach-Saks property implies reflexivity

[^0]in Banach spaces (See also [3]) and S. Kakutani [5] showed that Uniform convexity implies the Banach-Saks property. (See also [4])

The natural questions are the followings : For a Banach space X with the Banach-Saks property, is it uniformly convex? And does every reflexive Banach space have the Banach-Saks property? In 1972, A. Baernstein [1] gave an example of a reflexive Banach space which does not have the Banach-Saks property. In 1978, C. J. Seifert[8] showed that the dual of Baernstein space which is not uniformly convex has the Banach-Saks property.

2. Main result

In this section, we give the definition of property $\left(C_{k}\right)$ and prove that property $\left(C_{k}\right)$ implies the Banach-Saks property. Property $\left(C_{k}\right)$ is defined for $k \geq 2$ in an obvious fashion so that a uniform convexity is just property $\left(C_{2}\right)$.

Definition 1. $(X,\|\cdot\|)$ has property $\left(C_{k}\right)$ if it is reflexive and for all $\epsilon>0$, there exists a $\delta(\epsilon)<1$ such that for linearly independent k-elements $x_{1}, x_{2}, \cdots, x_{k}$ in B_{X} with $\left\|x_{i}-x_{j}\right\| \geq \epsilon$ for $i \neq j$ and $i, j=1,2, \cdots, k$,

$$
\left\|\frac{1}{k} \sum_{i=1}^{k} x_{i}\right\| \leq \delta(\epsilon) .
$$

Property $\left(C_{k}\right)$ implies property $\left(C_{k+1}\right)$.
Proposition 2. If a Banach space X has property $\left(C_{k}\right)$, then it has property $\left(C_{k+1}\right)$.

Proof. The proof is given by contradiction. Suppose that X has no property $\left(C_{k+1}\right)$. Then for all $n \in \mathbb{N}$, there exist linearly independent k-elements $x_{1}^{(n)}, \cdots, x_{k+1}^{(n)}$ in B_{X} and $\epsilon_{0}>0$ such that $\left\|x_{i}-x_{j}\right\| \geq \epsilon_{0}$, where $i \neq j$ and $i, j=1,2, \cdots, k+1$
and

$$
\left\|\frac{1}{k+1}\left(x_{1}^{(n)}+x_{2}^{(n)} \cdots+x_{k+1}^{(n)}\right)\right\|>1-\frac{1}{n} .
$$

Thus,

$$
\begin{aligned}
\left\|x_{1}^{(n)}+x_{2}^{(n)} \cdots+x_{k}^{(n)}\right\| & \geq\left\|x_{1}^{(n)}+x_{2}^{(n)} \cdots+x_{k+1}^{(n)}\right\|-\left\|x_{k+1}^{(n)}\right\| \\
& \geq(k+1)\left(1-\frac{1}{n}\right)-1 \\
& \geq k\left(1-\frac{2}{n}\right)
\end{aligned}
$$

This means that X has no property $\left(C_{k}\right)$, since $x_{1}^{(n)}, \cdots, x_{k}^{(n)}$ are linearly independent. We get the contradiction.

The converse of Proposition 2 does not hold. For simplicity, we give an example of X which is $\left(C_{3}\right)$ but not $\left(C_{2}\right)$. Let D be

$$
\begin{aligned}
& \left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2} \leq 1,|z| \leq \frac{3}{4}\right\} \\
& \quad \cap\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2} \leq \frac{25}{16}, \quad \frac{3}{4} \leq|z| \leq 1\right\}
\end{aligned}
$$

We define the new space $\left(\mathbb{R}^{3},\| \| \cdot \| \mid\right)$ whose norm is determined by Minkowsky functional under the set D. If we are given three linearly independent elements and two of them are located in a line which is parallel to z-axis and on $x^{2}+y^{2}=1$, the rest should be located in outside the line. This shows that $\left(\mathbb{R}^{3},\| \| \cdot \| \mid\right)$ is C_{3}. Furthermore if we are given two linearly independent elements, those two can be possibly located in a line which is parallel to z-axis and on $x^{2}+y^{2}=1$. This tells us that $\left(\mathbb{R}^{3},\| \| \cdot\| \|\right)$ is not C_{2}.

Since uniform convexity implies the Banach-Saks property [5] (See also [4]), it is also a natural question whether property $\left(C_{k}\right)$ implies the Banach-Saks property or not. We need the following lemma.

Lemma 3. Let X be a Banach space with property $\left(C_{k}\right)$ and $\left\{x_{i}\right\}$ be a weakly null and linearly independent sequence in X with $\left\|x_{i}\right\| \leq$ $\theta^{m}, i=1,2,3, \cdots, m=0,1,2, \cdots$, where $\theta=\max \left\{\delta\left(\frac{1}{k}\right), \frac{k^{2}-k+1}{k^{2}}\right\}$. Then for a given $i_{1} \in \mathbb{N}$, there exist $i_{2}, i_{3}, \cdots, i_{k}$ such that $i_{1}<i_{2}<$
$\cdots<i_{k}$ and

$$
\left\|\frac{1}{k} \sum_{j=1}^{k} x_{i_{j}}\right\| \leq \theta^{m+1}
$$

Proof. If $\left\|x_{i_{1}}\right\| \leq \frac{\theta^{m}}{k}$, then for any $i_{1}<i_{2}<\cdots<i_{k}$, we have

$$
\left\|\frac{1}{k} \sum_{j=1}^{k} x_{i_{j}}\right\| \leq \frac{\theta^{m}}{k^{2}}+\frac{k-1}{k} \theta^{m}=\left(\frac{k^{2}-k+1}{k^{2}}\right) \cdot \theta^{m} \leq \theta^{m+1}
$$

Suppose that $\left\|x_{i_{i}}\right\|>\frac{\theta^{m}}{k}$. Then we can select $x_{i_{2}}$ satisfying $\| x_{i_{1}}-$ $x_{i_{2}} \|>\frac{\theta^{m}}{k}$ and $i_{2}>i_{1}$. If there does not exist such $x_{i_{2}}$, we have $\left\|x_{i_{1}}-x_{n}\right\| \leq \frac{\theta^{m}}{k}$ for all $n>i_{1}$. For any $x^{*} \in B_{X^{*}}$, since we have assumed $\left\{x_{n}\right\}$ is a weakly null sequence,

$$
\begin{aligned}
\left|x^{*} x_{i_{1}}\right| & =\lim _{n \rightarrow \infty}\left|x^{*} x_{i_{1}}-x^{*} x_{n}\right| \\
& \leq \limsup _{n \rightarrow \infty}\left\|x_{i_{1}}-x_{n}\right\| \leq \frac{\theta^{m}}{k}
\end{aligned}
$$

This contradicts to $\left\|x_{i_{1}}\right\|>\frac{\theta^{m}}{k}$. Thus there exists $x_{i_{2}}$ such that

$$
\left\|x_{i_{1}}-x_{i_{2}}\right\|>\frac{\theta^{m}}{k}
$$

Now by the same argument we can select $x_{i_{3}}, x_{i_{4}}, \cdots, x_{k}$ such that

$$
\left\|x_{i_{s}}-x_{i_{t}}\right\|>\frac{\theta^{m}}{k}
$$

where $s, t \in\{1,2,3, \cdots, k\}$ and $s<t$. Now by the definition of prop$\operatorname{erty}\left(C_{k}\right)$ we have

$$
\left\|\frac{1}{k} \sum_{j=1}^{k} x_{i_{j}}\right\| \leq \delta\left(\frac{1}{k}\right) \theta^{m} \leq \theta^{m+1}
$$

This completes our proof.
We now show that property $\left(C_{k}\right)$ implies the Banach-Saks property with the similar method of Kakutani's [5].

Theorem 4. If a Banach space X has property $\left(C_{k}\right)$, then it has the Banach-Saks property.

Proof. Suppose that X is a Banach space with property $\left(C_{k}\right)$. Let $\left\{x_{n}\right\}$ be a bounded sequence in X. Since X is reflexive, weak compactness and Eberlein-Šmulian theorem give a weakly convergent subsequence $\left\{x_{n_{j}}\right\}$. Thus we may assume a sequence $\left\{x_{n}\right\}$ in B_{X} is weakly null and show that it has a subsequence whose arithmetic means converge to 0 in norm. If $\operatorname{dim} \operatorname{span}\left\{x_{n}\right\}<\infty,\left\{x_{n}\right\}$ has a convergent subsequence $\left\{x_{n_{i}}\right\}$. Thus arithmetic means of $\left\{x_{n_{i}}\right\}$ converges. Suppose that $\operatorname{dim} \operatorname{span}\left\{x_{n}\right\}=\infty$. Then $\left\{x_{n}\right\}$ has a linearly independent subsequence. Without lose of generality, we may assume that $\left\{x_{n}\right\}$ is linearly independent. Let $\theta=\max \left\{\delta\left(\frac{1}{k}\right), \frac{k^{2}-k+1}{k^{2}}\right\}$. As the first stage, we select a subsequence by Lemma $3,\left\{x_{m_{n}}\right\}$ from $\left\{x_{n}\right\}$ such that

$$
\left\|\frac{x_{m_{k(n-1)+1}}+x_{m_{k(n-1)+2}}+\cdots+x_{m_{k n}}}{k}\right\| \leq \theta \quad \text { for } n=1,2,3, \cdots
$$

with $m_{1}=2, m_{k(n-1)+1}=m_{k(n-1)}+1(n \geq 2)$. Lemma 3 also make it possible selecting $\left\{m_{i}\right\}$ as a strictly increasing sequence. We reindex this subsequence as

$$
x_{n}^{(1)}=\frac{x_{m_{k(n-1)+1}}+x_{m_{k(n-1)+2}}+\cdots+x_{m_{k} n}}{k} \quad \text { for } n=1,2,3, \cdots
$$

Then we have $\left\|x_{n}^{(1)}\right\| \leq \theta, n=1,2,3, \cdots$. Moreover $\left\{x_{n}^{(1)}\right\}$ is also weakly null. For the second step, by applying Lemma 3 again, we select a subsequence $\left\{x_{m_{n}^{(1)}}^{(1)}\right\}$ from $\left\{x_{n}^{(1)}\right\}$ such that

$$
\left\|\frac{x_{m_{k(n-1)+1}^{(1)}}^{(1)}+x_{m_{k(n-1)+2}^{(1)}}^{(1)}+\cdots+x_{m_{k n}^{(1)}}^{(1)}}{k}\right\| \leq \theta^{2} \quad \text { for } n=1,2,3, \cdots
$$

with $m_{1}^{(1)}=2, m_{k(n-1)+1}^{(1)}=m_{k(n-1)}^{(1)}+1 \quad(n=2,3, \cdots)$. Lemma 3 also make it possible selecting m_{j} as a strict increasing sequence. We reindex this sequence as

$$
x_{n}^{(2)}=\frac{x_{m_{k(n-1)+1}^{(1)}}^{(1)}+x_{m_{k(n-1)+2}^{(1)}}^{(1)}+\cdots+x_{m_{k n}^{(1)}}^{(1)}}{k}, \quad n=1,2,3, \cdots
$$

Then we have $\left\|x_{n}^{(2)}\right\| \leq \theta^{2}, n=1,2,3, \cdots$. Moreover $\left\{x_{n}^{(2)}\right\}$ is also weakly null. Continuing this process, for all $n \in \mathbb{N}$, we get a sequence $\left\{x_{n}^{(p)}\right\}$ such that
i) $\left\|x_{n}^{(p)}\right\| \leq \theta^{p}, \quad$ for $n \in \mathbb{N}$.
ii) $x_{n}^{(p)}=\left(x_{m_{k(n-1)+1}^{(p-1)}}^{(p-1)}+x_{m_{k(n-1)+2}^{(p-1)}}^{(p-1)}+\cdots+x_{m_{k n}^{(p-1)}}^{(p-1)}\right) / k$
iii) $1<m_{1}^{(p-1)}<m_{2}^{(p-1)}<\cdots<m_{k}^{(p-1)}<m_{k+1}^{(p-1)}<\cdots<$ $m_{2 k}^{(p-1)}<\cdots$
iv) $\left\{x_{n}^{(p)}\right\}$ is weakly null.

Before we go to the further step, we emphasize that each element $x_{n}^{(2)}$ is the average k^{2}-elements of $\left\{x_{n}\right\}$ where these k^{2}-elements are selected strictly increasingly. Now we write down the first element $x_{1}^{(p)}$ in the p-th step.

$$
\begin{aligned}
x_{1}^{(1)} & =\frac{x_{m_{1}}+x_{m_{2}}+\cdots+x_{m_{k}}}{k}=\frac{x_{2}+x_{m_{2}}+\cdots+x_{m_{k}}}{k} \\
x_{1}^{(2)} & =\frac{x_{m_{1}^{(1)}}^{(1)}+x_{m_{2}^{(1)}}^{(1)}+\cdots+x_{m_{k}^{(1)}}^{(1)}}{k}=\frac{x_{2}^{(1)}+x_{m_{2}^{(1)}}^{(1)}+\cdots+x_{m_{k}^{(1)}}^{(1)}}{k} \\
& =\frac{x_{m_{k+1}}+\cdots+x_{m_{2 k}}+x_{m_{k\left(m_{2}^{(1)}-1\right)+1}}+\cdots+x_{m_{k m_{k}^{(1)}}}}{k^{2}}
\end{aligned}
$$

From the construction of $\left\{x_{1}^{(p)}\right\}$, we can find that $x_{1}^{(p)}$ is representable in the form

$$
x_{1}^{(p)}=\frac{x_{l_{1}^{(p)}}+x_{l_{2}^{(p)}}+\cdots+x_{l_{k p}^{(p)}}}{k^{p}}, \quad p=1,2,3, \cdots
$$

with $1<l_{1}^{(1)}<l_{2}^{(1)}<\cdots<l_{k}^{(1)}<l_{1}^{(2)}<\cdots<l_{k}^{(2)}<l_{k+1}^{(2)}<\cdots<$ $l_{k^{2}}^{(2)}<\cdots$. Furthermore, for $q<p$ and $1 \leq j \leq k^{p-q}$, the average of the p-th block of k^{q}-elements of $\left\{x_{l_{i}^{(p)}}\right\}_{i=1}^{k^{p}}$

$$
\frac{x_{l_{(j-1) k^{q}+1}^{(p)}}+\cdots+x_{l_{j k^{q}}^{(p)}}}{k^{q}}
$$

is an element of the sequence $\left\{x_{n}^{(q)}\right\}$ and as such has norm $\leq \theta^{q}$. Now let $n_{1}=1, n_{\frac{k p-1}{k-1}+i}=l_{i}^{(p)} i=1,2,3, \cdots, k^{p}$ and $p=1,2, \cdots$ (that is, $n_{1}=1, n_{2}=l_{1}^{(1)}, n_{3}=l_{2}^{(1)}, n_{4}=l_{3}^{(1)}, \cdots, n_{k+1}=l_{k}^{(1)}, n_{k+2}=$ $\left.l_{1}^{(2)}, \cdots\right)$. Then $\left\{x_{n_{m}}\right\}$ is the desired subsequence. For given $\epsilon>0$, determine q such that $\theta^{q}<\frac{\epsilon}{3}$. With this q, ϵ, determine m such that $\frac{k^{q}}{m}<\frac{\epsilon}{3}$. Then for any $m \leq 1$, let r be such that

$$
\frac{k^{q}-1}{k-1}+(r-1) k^{q}+1 \leq m \leq \frac{k^{q}-1}{k-1}+r k^{q}
$$

Then we have

$$
\begin{aligned}
\frac{1}{m}\left\|x_{n_{1}}+\cdots+x_{n_{m}}\right\| & \leq \frac{1}{m}\left\|x_{n_{1}}+\cdots+x_{\frac{n^{k q-1}}{k-1}}\right\| \\
& +\frac{1}{m} \sum_{i=1}^{r-1}\left\|x_{n_{\frac{k^{q}-1}{k-1}+(i-1) k^{q}+1}}+\cdots+x_{n_{\frac{k^{q}-1}{k-1}+i k^{q}}}\right\| \\
& +\frac{1}{m}\left\|x_{n_{\frac{k^{q}-1}{k-1}+(r-1) k^{q}+1}^{k-1}}+\cdots+x_{n_{m}}\right\| \\
& \leq \frac{1}{m} \cdot\left(\frac{k^{q}-1}{k-1}-1\right)+\frac{r-1}{m} \cdot k^{q} \cdot \theta^{q}+\frac{k^{q}}{m} \\
& \leq \frac{k^{q}}{m}+\theta^{q}+\frac{k^{q}}{m}<\epsilon .
\end{aligned}
$$

It follow that the averages of $\left\{x_{n_{m}}\right\}$ converge to 0 in norm.

References

[1] A. Baernstein, On reflexivity and summability, Studia Math. 42 (1972), 91-94.
[2] S. Banach and S. Saks, Sur convergence forte dans les champs L_{p}, Studia Math. 2 (1930), 51-57.
[3] J. Diestel, Geometry of Banach Spaces - Selected Topics, Springer-Verlag, Berlin, New York, 1975.
[4] J. Diestel, Sequences and Series in Banach Spaces, Springer-Verlag, New York, 1984.
[5] S. Kakutani, Weak convergence in uniformly convex spaces, Tôhoku Math. J. 45 (1938), 188-193.
[6] T. Nishiura and D. Waterman, Reflexivity and summability, Studia Math. 23 (1963), 53-57.
[7] J. Schreier, Ein Gegenbeispeil zur Theorie der schwachen Konvergenz, Studia Math. 2 (1930), 58-62.
[8] C. J. Seifert, The dual of Baernstein's space and the Banach-Saks property, Bull. Acad. Polon. Sci. 26 (1978), 237-239.

Department of Mathematics education
Inha University
Incheon 402-751, Korea
E-mail: cslee@inha.ac.kr
Bangmok College of Basic Studies
Myong Ji University
Yong-In 449-728, Korea
E-mail: kgjo@mju.ac.kr

[^0]: Received April 23, 2009. Revised July 2, 2009.
 2000 Mathematics Subject Classification: 46B20.
 Key words and phrases: Property $\left(C_{k}\right)$, uniform convexity, Banach-Saks property. This work was supported by the Inha University Research Grant.
 *Corresponding author.

