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SOME GEOMETRIC PROPERTY OF
BANACH SPACES-PROPERTY (Ck)

Chongsung Lee and Kyugeun Cho∗

Abstract. In this paper, we define property (Ck) and show that
property (Ck) implies property (Ck+1). The converse does not hold.
Moreover, we prove that property (Ck) implies the Banach-Saks
property.

1. Introduction

Let (X, ‖ · ‖) be a real Banach space. We denote the dual of X as
X∗ and the second dual of X as X∗∗ respectively.

By BX and SX , we denote the closed unit ball and the unit sphere
of X, respectively. For any subset A of X by span{A} we denote the
set of all linear combinations of vectors of A. (X, ‖ · ‖) is said to be
reflexive if the natural embedding maps X onto X∗∗.

(X, ‖ · ‖) is said to be uniformly convex (UC) if for all ε > 0, there
exists a δ(ε) < 1 such that for x, y ∈ BX with ‖x− y‖ ≥ ε,

∥∥∥∥
1
2
(x + y)

∥∥∥∥ ≤ δ(ε).

A Banach space is said to have the Banach-Saks property if any
bounded sequence in the space admits a subsequence whose arithmetic
means converges in norm. In 1930, S. Banach and S. Saks[2] showed
that every bounded sequence in Lp[0, 1], 1 < p < ∞, has a subsequence
with arithmetic means converging in norm. J. Schreier[7] showed that
C[0, 1] does not have the Banach-Saks property. T. Nishiura and D.
Waterman [6] proved that the Banach-Saks property implies reflexivity
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in Banach spaces (See also [3]) and S. Kakutani [5] showed that Uniform
convexity implies the Banach-Saks property. (See also [4])

The natural questions are the followings : For a Banach space X
with the Banach-Saks property, is it uniformly convex? And does every
reflexive Banach space have the Banach-Saks property? In 1972, A.
Baernstein [1] gave an example of a reflexive Banach space which does
not have the Banach-Saks property. In 1978, C. J. Seifert[8] showed
that the dual of Baernstein space which is not uniformly convex has
the Banach-Saks property.

2. Main result

In this section, we give the definition of property (Ck) and prove
that property (Ck) implies the Banach-Saks property. Property (Ck)
is defined for k ≥ 2 in an obvious fashion so that a uniform convexity
is just property (C2).

Definition 1. (X, ‖ · ‖) has property (Ck) if it is reflexive and for
all ε > 0, there exists a δ(ε) < 1 such that for linearly independent
k-elements x1, x2, · · · , xk in BX with ‖xi − xj‖ ≥ ε for i 6= j and
i, j = 1, 2, · · · , k, ∥∥∥∥∥

1
k

k∑

i=1

xi

∥∥∥∥∥ ≤ δ(ε).

Property (Ck) implies property (Ck+1).

Proposition 2. If a Banach space X has property (Ck), then it
has property (Ck+1).

Proof. The proof is given by contradiction. Suppose that X has no
property (Ck+1). Then for all n ∈ N, there exist linearly independent
k-elements x

(n)
1 , · · · , x

(n)
k+1 in BX and ε0 > 0 such that ‖xi − xj‖ ≥ ε0,

where i 6= j and i, j = 1, 2, · · · , k + 1
and ∥∥∥∥

1
k + 1

(
x

(n)
1 + x

(n)
2 · · ·+ x

(n)
k+1

)∥∥∥∥ > 1− 1
n

.
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Thus,

∥∥∥x
(n)
1 + x

(n)
2 · · ·+ x

(n)
k

∥∥∥ ≥
∥∥∥x

(n)
1 + x

(n)
2 · · ·+ x

(n)
k+1

∥∥∥−
∥∥∥x

(n)
k+1

∥∥∥

≥ (k + 1)
(

1− 1
n

)
− 1

≥ k

(
1− 2

n

)

This means that X has no property (Ck), since x
(n)
1 , · · · , x

(n)
k are lin-

early independent. We get the contradiction. ¤

The converse of Proposition 2 does not hold. For simplicity, we give
an example of X which is (C3) but not (C2). Let D be

{(x, y, z) ∈ R3 :x2 + y2 ≤ 1, |z| ≤ 3
4
}

∩ {(x, y, z) ∈ R3 : x2 + y2 + z2 ≤ 25
16

,
3
4
≤ |z| ≤ 1}

We define the new space (R3, ‖| · ‖|) whose norm is determined by
Minkowsky functional under the set D. If we are given three linearly
independent elements and two of them are located in a line which is
parallel to z-axis and on x2 + y2 = 1, the rest should be located in
outside the line. This shows that (R3, ‖| · ‖|) is C3. Furthermore if we
are given two linearly independent elements, those two can be possibly
located in a line which is parallel to z-axis and on x2 + y2 = 1. This
tells us that (R3, ‖| · ‖|) is not C2.

Since uniform convexity implies the Banach-Saks property [5] (See
also [4]), it is also a natural question whether property (Ck) implies
the Banach-Saks property or not. We need the following lemma.

Lemma 3. Let X be a Banach space with property (Ck) and {xi}
be a weakly null and linearly independent sequence in X with ‖xi‖ ≤
θm, i = 1, 2, 3, · · · , m = 0, 1, 2, · · · , where θ = max

{
δ
(

1
k

)
, k2−k+1

k2

}
.

Then for a given i1 ∈ N, there exist i2, i3, · · · , ik such that i1 < i2 <
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· · · < ik and ∥∥∥∥∥∥
1
k

k∑

j=1

xij

∥∥∥∥∥∥
≤ θm+1.

Proof. If ‖xi1‖ ≤ θm

k , then for any i1 < i2 < · · · < ik, we have
∥∥∥∥∥∥

1
k

k∑

j=1

xij

∥∥∥∥∥∥
≤ θm

k2
+

k − 1
k

θm =
(

k2 − k + 1
k2

)
· θm ≤ θm+1.

Suppose that ‖xii‖ > θm

k . Then we can select xi2 satisfying ‖xi1 −
xi2‖ > θm

k and i2 > i1. If there does not exist such xi2 , we have
‖xi1 − xn‖ ≤ θm

k for all n > i1. For any x∗ ∈ BX∗ , since we have
assumed {xn} is a weakly null sequence,

|x∗xi1 | = lim
n→∞

|x∗xi1 − x∗xn|

≤ lim sup
n→∞

‖xi1 − xn‖ ≤ θm

k
.

This contradicts to ‖xi1‖ > θm

k . Thus there exists xi2 such that

‖xi1 − xi2‖ >
θm

k

Now by the same argument we can select xi3 , xi4 , · · · , xk such that

‖xis − xit‖ >
θm

k
,

where s, t ∈ {1, 2, 3, · · · , k} and s < t. Now by the definition of prop-
erty (Ck) we have

∥∥∥∥∥∥
1
k

k∑

j=1

xij

∥∥∥∥∥∥
≤ δ

(
1
k

)
θm ≤ θm+1

This completes our proof. ¤

We now show that property (Ck) implies the Banach-Saks property
with the similar method of Kakutani’s [5].
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Theorem 4. If a Banach space X has property (Ck), then it has
the Banach-Saks property.

Proof. Suppose that X is a Banach space with property (Ck). Let
{xn} be a bounded sequence in X. Since X is reflexive, weak com-
pactness and Eberlein-Šmulian theorem give a weakly convergent sub-
sequence {xnj

}. Thus we may assume a sequence {xn} in BX is weakly
null and show that it has a subsequence whose arithmetic means con-
verge to 0 in norm. If dim span{xn} < ∞, {xn} has a convergent
subsequence {xni}. Thus arithmetic means of {xni} converges. Sup-
pose that dim span{xn} = ∞. Then {xn} has a linearly independent
subsequence. Without lose of generality, we may assume that {xn}
is linearly independent. Let θ = max

{
δ
(

1
k

)
, k2−k+1

k2

}
. As the first

stage, we select a subsequence by Lemma 3, {xmn} from {xn} such
that∥∥∥∥

xmk(n−1)+1 + xmk(n−1)+2 + · · ·+ xmkn

k

∥∥∥∥ ≤ θ for n = 1, 2, 3, · · ·

with m1 = 2, mk(n−1)+1 = mk(n−1) + 1 (n ≥ 2). Lemma 3 also make
it possible selecting {mi} as a strictly increasing sequence. We reindex
this subsequence as

x(1)
n =

xmk(n−1)+1 + xmk(n−1)+2 + · · ·+ xmkn

k
for n = 1, 2, 3, · · ·

Then we have ‖x(1)
n ‖ ≤ θ, n = 1, 2, 3, · · · . Moreover {x(1)

n } is also
weakly null. For the second step, by applying Lemma 3 again, we
select a subsequence {x(1)

m
(1)
n

} from {x(1)
n } such that

∥∥∥∥∥∥∥

x
(1)

m
(1)
k(n−1)+1

+ x
(1)

m
(1)
k(n−1)+2

+ · · ·+ x
(1)

m
(1)
kn

k

∥∥∥∥∥∥∥
≤ θ2 for n = 1, 2, 3, · · ·

with m
(1)
1 = 2, m

(1)
k(n−1)+1 = m

(1)
k(n−1) + 1 (n = 2, 3, · · · ). Lemma 3

also make it possible selecting mj as a strict increasing sequence. We
reindex this sequence as

x(2)
n =

x
(1)

m
(1)
k(n−1)+1

+ x
(1)

m
(1)
k(n−1)+2

+ · · ·+ x
(1)

m
(1)
kn

k
, n = 1, 2, 3, · · ·
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Then we have ‖x(2)
n ‖ ≤ θ2, n = 1, 2, 3, · · · . Moreover {x(2)

n } is also
weakly null. Continuing this process, for all n ∈ N, we get a sequence
{x(p)

n } such that

i) ‖x(p)
n ‖ ≤ θp, for n ∈ N.

ii) x
(p)
n =

(
x

(p−1)

m
(p−1)
k(n−1)+1

+ x
(p−1)

m
(p−1)
k(n−1)+2

+ · · ·+ x
(p−1)

m
(p−1)
kn

)
/k

iii) 1 < m
(p−1)
1 < m

(p−1)
2 < · · · < m

(p−1)
k < m

(p−1)
k+1 < · · · <

m
(p−1)
2k < · · ·

iv) {x(p)
n } is weakly null.

Before we go to the further step, we emphasize that each element x
(2)
n

is the average k2-elements of {xn} where these k2-elements are selected
strictly increasingly. Now we write down the first element x

(p)
1 in the

p-th step.

x
(1)
1 =

xm1 + xm2 + · · ·+ xmk

k
=

x2 + xm2 + · · ·+ xmk

k

x
(2)
1 =

x
(1)

m
(1)
1

+ x
(1)

m
(1)
2

+ · · ·+ x
(1)

m
(1)
k

k
=

x
(1)
2 + x

(1)

m
(1)
2

+ · · ·+ x
(1)

m
(1)
k

k

=
xmk+1 + · · ·+ xm2k

+ xm
k(m

(1)
2 −1)+1

+ · · ·+ xm
km

(1)
k

k2

...

From the construction of {x(p)
1 }, we can find that x

(p)
1 is representable

in the form

x
(p)
1 =

x
l
(p)
1

+ x
l
(p)
2

+ · · ·+ x
l
(p)
kp

kp
, p = 1, 2, 3, · · ·

with 1 < l
(1)
1 < l

(1)
2 < · · · < l

(1)
k < l

(2)
1 < · · · < l

(2)
k < l

(2)
k+1 < · · · <

l
(2)
k2 < · · · . Furthermore, for q < p and 1 ≤ j ≤ kp−q, the average of

the p-th block of kq-elements of
{

x
l
(p)
i

}kp

i=1

x
l
(p)
(j−1)kq+1

+ · · ·+ x
l
(p)
jkq

kq



Some geometric property of Banach spaces-property (Ck) 243

is an element of the sequence {x(q)
n } and as such has norm ≤ θq. Now

let n1 = 1, n kp−1
k−1 +i = l

(p)
i i = 1, 2, 3, · · · , kp and p = 1, 2, · · · (that

is, n1 = 1, n2 = l
(1)
1 , n3 = l

(1)
2 , n4 = l

(1)
3 , · · · , nk+1 = l

(1)
k , nk+2 =

l
(2)
1 , · · · ). Then {xnm} is the desired subsequence. For given ε > 0,
determine q such that θq < ε

3 . With this q, ε, determine m such that
kq

m < ε
3 . Then for any m ≤ 1, let r be such that

kq − 1
k − 1

+ (r − 1)kq + 1 ≤ m ≤ kq − 1
k − 1

+ rkq

Then we have

1
m
‖xn1 + · · ·+ xnm‖ ≤

1
m

∥∥∥∥xn1 + · · ·+ xn kq−1
k−1

∥∥∥∥

+
1
m

r−1∑

i=1

∥∥∥∥xn kq−1
k−1 +(i−1)kq+1

+ · · ·+ xn kq−1
k−1 +ikq

∥∥∥∥

+
1
m

∥∥∥∥xn kq−1
k−1 +(r−1)kq+1

+ · · ·+ xnm

∥∥∥∥

≤ 1
m
·
(

kq − 1
k − 1

− 1
)

+
r − 1
m

· kq · θq +
kq

m

≤ kq

m
+ θq +

kq

m
< ε.

It follow that the averages of {xnm} converge to 0 in norm. ¤
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