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IMPROVED MULTIPLICITY RESULTS FOR FULLY

NONLINEAR PARABOLIC SYSTEMS

Tacksun Jung and Q-Heung Choi∗

Abstract. We investigate the existence of multiple solutions (ξ, η)
for perturbations of the parabolic system with Dirichlet boundary
condition

(0.1)
ξt = −Lξ + g1(3ξ + η)− sφ1 − h1(x, t) in Ω× (0, 2π),

ηt = −Lη + g2(3ξ + η)− sφ1 − h2(x, t) in Ω× (0, 2π).

We show the existence of multiple solutions (ξ, η) for perturbations
of the parabolic system when the nonlinearity g′1, g

′
2 are bounded

and 3g′1(−∞) + g′2(−∞) < λ1, λn < 3g′1(+∞) + g′2(+∞) < λn+1.

1. Introduction

Let Ω be a bounded domain in Rn with smooth boundary ∂Ω and let
L denote the elliptic differential operator. In [2, 4, 5, 7, 8] the authors
investigate multiplicity of solutions of the nonlinear elliptic equation with
Dirichlet boundary condition

(1.1)
Lu + g(u) = f(x) in Ω,

u = 0 on ∂Ω,

where g is the semilinear term and L is a second order linear elliptic
differential operator and a mapping from L2(Ω) into itself with compact
inverse, with eigenvalues −λi, each repeated according to its multiplicity,

0 < λ1 < λ2 < λ3 ≤ · · · ≤ λi ≤ · · · → ∞.
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Equation (1.1) and the following type nonlinear equation with Dirich-
let boundary condition was studied by many authors:

(1.2)
Lu = bu+ − au− + f in Ω,

u = 0 on ∂Ω.

In [9] Lazer and McKenna point out that this kind of nonlinearity
bu+ − au− can furnish a model to study traveling waves in suspension
bridges. So the nonlinear equation with jumping nonlinearity have been
extensively studied by many authors. For fourth elliptic equation Taran-
tello [15] , Micheletti and Pistoia [12][13] proved the existence of non-
trivial solutions used degree theory and critical points theory separately.
For one-dimensional case Lazer and McKenna [10] proved the existence
of nontrivial solution by the global bifurcation method. For this jump-
ing nonlinearity we are interest in the multiple nontrivial solutions of
the equation. Here we used variational reduction method to find the
nontrivial solutions of problem (1.2).

In [6, 11] the authors investigate multiplicity of solutions of the non-
linear parabolic equation with Dirichlet boundary condition

(1.3)
ut = −Lu + f(u)− sφ1 − h(x, t) in Ω× (0, 2π),

u = 0 on ∂Ω× (0, 2π).

In [5] the authors investigate the existence of solutions (ξ, η) for per-
turbations of the parabolic system with Dirichlet boundary condition

(1.4)

ξt = −Lξ + µg(3ξ + η)− s1φ1 − h1(x, t) in Ω× (0, 2π),

ηt = −Lη + νg(3ξ + η)− s2φ1 − h2(x, t) in Ω× (0, 2π),

ξ = 0, η = 0 on ∂Ω× (0, 2π),

where we assume that h1, h2 ∈ H∗ and g′ is bounded, (3µ+ν)g′(−∞) <
λ1, λn < (3µ + ν)g′(+∞) < λn+1. Here they assume that the nonlinear
term µg(3ξ + η) is a multiple of the other nonlinear term νg(3ξ + η).

In this paper we investigate the existence of solutions (ξ, η) for per-
turbations of the parabolic system with Dirichlet boundary condition

(1.5)

ξt = −Lξ + g1(3ξ + η)− s1φ1 − h1(x, t) in Ω× (0, 2π),

ηt = −Lη + g2(3ξ + η)− s2φ1 − h2(x, t) in Ω× (0, 2π),

ξ = 0, η = 0 on ∂Ω× (0, 2π),
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where we assume that h1, h2 ∈ H∗ and g′1, g
′
2 are bounded and 3g′1(−∞)+

g′2(−∞) < λ1, λn < 3g′1(+∞) + g′2(+∞) < λn+1. We improve the result
of [5]. Here we do not assume that the nonlinear term g1(3ξ + η) is a
multiple of the other nonlinear term g2(3ξ + η).

In section 2, we state the result for the parabolic equation with Dirich-
let boundary condition when the nonlinearity crosses eigenvalues. We
investigate the multiplicity of solutions for the single nonlinear parabolic
equation. In section 3, we investigate the uniqueness when the nonlin-
earity does not cross eigenvalues. We also investigate multiple solutions
(ξ(x, t), η(x, t)) for perturbations of the parabolic system with Dirich-
let boundary condition when the nonlinearities g′1, g

′
2 are bounded and

3g′1(−∞)+ g′2(−∞) < λ1, λn < 3g′1(+∞)+ g′2(+∞) < λn+1. Here we do
not assume that the nonlinear term g1(3ξ + η) is a multiple of the other
nonlinear term g2(3ξ + η).

2. Parabolic equations with source terms

In this section we state the result for the parabolic equation with
Dirichlet boundary condition when the nonlinearity crosses eigenvalues.

Let Ω be a bounded domain in Rn with smooth boundary ∂Ω and let
L denote the elliptic differential operator. We look for weak solutions of
the parabolic equation with Dirichlet boundary condition

(2.1)
ut = −Lu + f(u)− sφ1 − h(x, t) in Ω× (0, 2π),

u = 0 on ∂Ω× (0, 2π).

We assume that the eigenfunctions φi of L are an orthonormal basis
for L2(Ω) with eigenfunctions −λi, λ1 > 0, λi → +∞, and that φ1(x) >
0, x ∈ Ω. These are the assumptions of this section. For the more results
for the parabolic equation we refer to [6, 11].

We shall work with the complex Hilbert space H∗
T = L2(Ω× (0, T )),

equipped with the usual inner product

〈v, ω〉∗ =

∫ 2π

0

∫

Ω

v(x, t)ω(x, t)dxdt

and norm ‖v‖ = 〈v, v〉∗ 1
2 . Later we shall switch to the real subspace HT .

The functions φmn = φn(x)eimt
√

2π
, n ≥ 1,m = 0,±1,±2, . . . are a complete
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orthornormal basis for H∗. Let Σ∗ denote sums over the indices m, n.
Every v ∈ H∗ has a Fourier expansion

v = Σ∗vmnφmn,

with Σ|vmn|2 = ‖v‖2, vmn = 〈v, φ∗mn〉. A weak solution to the boundary
value problem (2.1) is, by definition, a function u ∈ H satisfying Lu ∈ H,
i.e. Σ∗|umn|2(m2 + λ2

n) < ∞ satisfying (2.1) in H.
For real α 6= λn, the operator R = (L + α−Dt)

−1 denoted by

u = Rh ↔ umn =
hmn

−λn + α + im

is a compact linear operator on H∗ and the operator norm of R, ‖R‖ =
1

|α−λn| , where λn is an eigenvalue of −L closest to α.

From now on, we restrict ourselves to the real subspace H and observe
that it is invariant under R.

Our first theorem is a non-self-adjoint problem.

Theorem 2.1. Assume that f ′ is bounded, that f ′(+∞) = α satisfies
λn < α < λn+1 and that h ∈ H. Then there exists s0 > 0, ε > 0 such
that the Leray-Schauder degree

deg(u− (−L + Dt)
−1(f(u)− sφ1 − h), B∗

sε(sθ), 0) = (−1)n (2.2)

for s ≥ s0. Here B∗
r denotes a ball of radius r in H and

θ = −(−L− α + Dt)
−1φ1 =

φ1

α− λ1

.

Proposition 1. If f ′ is bounded, and α = f ′(−∞) < λ1, then there
exist positive constants s0, ε such that

deg(u− (Dt − L)−1(f(u)− sφ1 − h), B∗
sε(sθ), 0) = 1

for s ≥ s0, where θ = φ1

α−λ1
< 0.

Lemma 2.1. Assume that |f(u)| ≤ a + c|u|, f ′(−∞), f ′(+∞) exist,
that f(u) − λ1u ≥ ε|u| − b, and that h ∈ H satisfies ‖h‖ ≤ r, where
a, b, c, r, ε are positive constants. Then there exists C depending only on
a, b, c, r, ε such that

Dtu = Lu + f(u)− sφ1 − h

u(x, t + 2π) = u(x, t)

satisfies ‖u‖ ≤ C.
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Lemma 2.2. Let s1 ∈ R under the assumptions of the preceding
lemma, there exists C1 > 0, depending on s1 and the constants of Lemma
1, such that

deg(u− (Dt − Lu)−1(f(u)− (h + sφ1)), B
∗
β(0), 0) = 0

for s ≤ s1 and β > C1.

The proof of Lemma 2.2 is the same as those for the self-adjoint case,
as done in Chapter I(cf. [11]). There is no solution on the boundary of
the ball for s ≤ s1, by the previous lemma. Therefore, by homotopy,
the degree is the same for all s ≤ s1, and since it must be zero for large
negative s, it must be zero for all s ≤ s1.

We have now assembled all the ingredients for our first existence the-
orem.

Theorem 2.2. Let h ∈ H∗. Assume f ′ is bounded, f ′(−∞) <
λ1, λn < f ′(+∞) < λn+1. Then there exists s0 so that if s ≥ s0, equation
(2.1) has at least two 2π-periodic solutions if n is even, and at least three
if n is odd.

The proof is by now obvious. The degree on a large ball is zero. By
Theorem 2.1, we can find a ball near θ, on which the degree of the map

u− (Dt − L)−1(f(u)− (sφ1 + h(x)))

is 1, and a ball on which the degree is zero, we have two solutions if n is
odd, and three if n is even. This concludes the proof.

3. Periodic solutions of the parabolic system

Let Ω be a bounded domain in Rn with smooth boundary ∂Ω and let L
denote the elliptic differential operator. In this section we investigate the
existence of multiple solutions (ξ, η) for perturbations of the parabolic
system with Dirichlet boundary condition

(3.1)

ξt = −Lξ + g1(3ξ + η)− s1φ1 − h1(x, t) in Ω× (0, 2π),

ηt = −Lη + g2(3ξ + η)− s2φ1 − h2(x, t) in Ω× (0, 2π),

ξ = 0, η = 0 on ∂Ω× (0, 2π),

where we assume that h1, h2 ∈ H∗ and g′1, g
′
2 are bounded and 3g′1(−∞)+

g′2(−∞) < λ1, λn < 3g′1(+∞) + g′2(+∞) < λn+1. We also assume that
s1, s2 > 0.
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Theorem 3.1. Let s1, s2 > 0. Assume that 3A+B < λ1 and h ∈ H∗.
Then the parabolic system with Dirichlet boundary condition

(3.2)

ξt = −Lξ + A(3ξ + η)+ − s1φ1 − h1(x, t) in Ω× (0, 2π),

ηt = −Lη + B(3ξ + η)+ − s2φ1 − h2(x, t) in Ω× (0, 2π),

ξ = 0, η = 0 on ∂Ω× (0, 2π),

has a unique solution (ξ, η).

Proof. From problem (3.2) we get the equation

(3.3)

(3ξ + η)t = −L(3ξ + η) + (3A + B)(3ξ + η)+

− (3s1 + s2)φ1 − 3h1(x, t)− h2(x, t) in Ω× (0, 2π),

ξ = 0, η = 0 on ∂Ω× (0, 2π).

Put w = 3ξ + η. Then the above equation is equivalent to

(3.4)

wt + Lw + (3A + B)w+ =

− (3s1 + s2)φ1 − 3h1 − h2 in Ω× (0, 2π),

w = 0 on ∂Ω.

When 3A + B < λ1, by the contraction mapping principle, the above
equation has a unique solution, say w1. For any F ∈ H0 the linear
problem

(3.5)
ut + Lu = F in Ω× (0, 2π),

u = 0 on ∂Ω× (0, 2π)

has a unique solution.
Hence we get the unique solution (ξ, η) of problem (3.2) from the

following system

(3.6)

ξt = −Lξ + Aw+
1 − s1φ1 − h1(x, t) in Ω× (0, 2π),

ηt = −Lη + Bw+
1 − s2φ1 − h2(x, t) in Ω× (0, 2π),

ξ = 0, η = 0 on ∂Ω× (0, 2π).

Theorem 3.2. Let s1 = s2 = s > 0. Assume that h1, h2 ∈ H∗

and g′1, g
′
2 are bounded and 3g′1(−∞) + g′2(−∞) < λ1, λn < 3g′1(+∞) +

g′2(+∞) < λn+1. Then there exists s0 so that if s ≥ s0, equation (3.1)
has at least two 2π-periodic solutions if n is even, and at least three if
n is odd.
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Proof. From problem (3.2) we get the equation

(3.7)

(3ξ + η)t = −L(3ξ + η) + 3g1(3ξ + η) + g2(3ξ + η)

− 4s1φ1 − 3h1(x, t)− h2(x, t) in Ω× (0, 2π),

ξ = 0, η = 0 on ∂Ω× (0, 2π).

Put w = 3ξ + η. Then the above equation is equivalent to

(3.8)

wt + Lw + 3g1(w) + g2(w) =

− 4s1φ1 − 3h1(x, t)− h2(x, t) in Ω× (0, 2π),

w = 0 on ∂Ω.

Since g′1, g
′
2 are bounded and 3g′1(−∞)+g′2(−∞) < λ1, λn < 3g′1(+∞)+

g′2(+∞) < λn+1, by Theorem 2.1 there exists s0 so that if s ≥ s0, equa-
tion (3.1) has at least two 2π-periodic solutions(say, we1, we2) if n is even,
and at least three solutions(say, wo1, wo2, wo3) if n is odd.

When n is even, we get the solutions (ξ, η) of problem (3.1) from the
following systems:

(3.9)

ξt = −Lξ + g1(we1)− sφ1 − h1(x, t) in Ω× (0, 2π),

ηt = −Lη + +g2(we1)− s2φ1 − h2(x, t) in Ω× (0, 2π),

ξ = 0, η = 0 on ∂Ω× (0, 2π).

(3.10)

ξt = −Lξ + g1(we2)− sφ1 − h1(x, t) in Ω× (0, 2π),

ηt = −Lη + +g2(we2)− s2φ1 − h2(x, t) in Ω× (0, 2π),

ξ = 0, η = 0 on ∂Ω× (0, 2π).

Therefore system (3.1) has at least two solutions if n is even.
When n is odd, we get the solutions (ξ, η) of problem (3.1) from the

following systems:

(3.11)

ξt = −Lξ + g1(wo1)− sφ1 − h1(x, t) in Ω× (0, 2π),

ηt = −Lη + +g2(wo1)− s2φ1 − h2(x, t) in Ω× (0, 2π),

ξ = 0, η = 0 on ∂Ω× (0, 2π).

(3.12)

ξt = −Lξ + g1(wo2)− sφ1 − h1(x, t) in Ω× (0, 2π),

ηt = −Lη + +g2(wo2)− s2φ1 − h2(x, t) in Ω× (0, 2π),

ξ = 0, η = 0 on ∂Ω× (0, 2π).
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(3.13)

ξt = −Lξ + g1(wo3)− sφ1 − h1(x, t) in Ω× (0, 2π),

ηt = −Lη + +g2(wo3)− s2φ1 − h2(x, t) in Ω× (0, 2π),

ξ = 0, η = 0 on ∂Ω× (0, 2π).

Therefore system (3.1) has at least three solutions if n is odd.
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