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IMPROVED MULTIPLICITY RESULTS FOR FULLY
NONLINEAR PARABOLIC SYSTEMS

TACKSUN JUNG AND Q-HEUNG CHOT*

ABSTRACT. We investigate the existence of multiple solutions (&, )
for perturbations of the parabolic system with Dirichlet boundary
condition

& =—LE+ g1(3E+1m) — s¢1 — hi(x,t) in Q x (0,27),

ne = —Ln+ g2(36 +n) — s¢p1 — ha(z,t) in Q x (0,2m).

We show the existence of multiple solutions (£, 7) for perturbations
of the parabolic system when the nonlinearity g}, g5 are bounded
and 3¢1(—00) 4+ gh(—00) < A1, Ap < 3¢1(400) + gh(+00) < Apy1.

(0.1)

1. Introduction

Let 2 be a bounded domain in R™ with smooth boundary 02 and let
L denote the elliptic differential operator. In [2, 4, 5, 7, 8] the authors
investigate multiplicity of solutions of the nonlinear elliptic equation with
Dirichlet boundary condition

. Lu+g(u) = f(z) in €,
(L.1) u=0 on 09,
where ¢ is the semilinear term and L is a second order linear elliptic

differential operator and a mapping from L?(2) into itself with compact
inverse, with eigenvalues —\;, each repeated according to its multiplicity,

D<A <A< A< <\ < — 000
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Equation (1.1) and the following type nonlinear equation with Dirich-
let boundary condition was studied by many authors:

Lu=bu" —au” +f in Q,

(1.2) u=0 on Of.

In [9] Lazer and McKenna point out that this kind of nonlinearity
bu™ — au~ can furnish a model to study traveling waves in suspension
bridges. So the nonlinear equation with jumping nonlinearity have been
extensively studied by many authors. For fourth elliptic equation Taran-
tello [15] , Micheletti and Pistoia [12][13] proved the existence of non-
trivial solutions used degree theory and critical points theory separately.
For one-dimensional case Lazer and McKenna [10] proved the existence
of nontrivial solution by the global bifurcation method. For this jump-
ing nonlinearity we are interest in the multiple nontrivial solutions of
the equation. Here we used variational reduction method to find the
nontrivial solutions of problem (1.2).

In [6, 11] the authors investigate multiplicity of solutions of the non-
linear parabolic equation with Dirichlet boundary condition

up = —Lu+ f(u) — s¢1 — h(z,t) in Q x (0,2m),

1.
(1.3) u=0 on 00 x(0,2m).

In [5] the authors investigate the existence of solutions (§,n) for per-
turbations of the parabolic system with Dirichlet boundary condition

& = —LE+ ng(3+1n) — s161 — hi(x,t) in Q x (0, 27),
(1.4) m=—Ln+vg(3§ +n) — se¢p1 — ho(z,t) in Q x (0,27),
£E=0, n=0 on 00 x(0,2n),
where we assume that hy, hy € H* and ¢’ is bounded, (3u+v)g¢'(—o0) <
Ay A < B+ v)g'(+00) < Ayy1. Here they assume that the nonlinear
term pg(3¢ + n) is a multiple of the other nonlinear term vg(3§ + 7).

In this paper we investigate the existence of solutions (£, ) for per-
turbations of the parabolic system with Dirichlet boundary condition

’St: —Lf+91(35+77) _31¢1 _h1<$7t) in 2 x (0727T)7
(15) = —Ln +gg(3€ + 7’]) - 82¢1 — hg(l’,t} in Q x (O, 271')7
£=0, n=0 on 00 x(0,2n),
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where we assume that hy, he € H* and g}, g5 are bounded and 3¢/ (—o0)+
g5(—00) < A1, A < 391 (+00) + gh(4+00) < Apg1. We improve the result
of [5]. Here we do not assume that the nonlinear term ¢;(3¢ + n) is a
multiple of the other nonlinear term g2(3¢ + 7).

In section 2, we state the result for the parabolic equation with Dirich-
let boundary condition when the nonlinearity crosses eigenvalues. We
investigate the multiplicity of solutions for the single nonlinear parabolic
equation. In section 3, we investigate the uniqueness when the nonlin-
earity does not cross eigenvalues. We also investigate multiple solutions
(&(x,t),n(z,t)) for perturbations of the parabolic system with Dirich-
let boundary condition when the nonlinearities ¢/, g5 are bounded and
391 (—00) 4+ g5(—00) < A1, A < 3¢ (+00) + g5(4+00) < Aypq. Here we do
not assume that the nonlinear term g¢;(3¢ + ) is a multiple of the other
nonlinear term g»(3€ + 7).

2. Parabolic equations with source terms

In this section we state the result for the parabolic equation with
Dirichlet boundary condition when the nonlinearity crosses eigenvalues.

Let €2 be a bounded domain in R™ with smooth boundary 02 and let
L denote the elliptic differential operator. We look for weak solutions of
the parabolic equation with Dirichlet boundary condition

ur = —Lu+ f(u) — s¢r — h(z,t) in Q x (0,2m),

2.1
(21) u=0 on 00 x(0,2m).

We assume that the eigenfunctions ¢; of L are an orthonormal basis
for L?(Q) with eigenfunctions —\;, A\; > 0, \; — 400, and that ¢;(z) >
0,z € Q. These are the assumptions of this section. For the more results
for the parabolic equation we refer to [6, 11].

We shall work with the complex Hilbert space H} = L*(Q x (0,7)),
equipped with the usual inner product

(v, w)* :/D%/QU(:U,t)w(x,t)dxdt

and norm ||v|| = (v, v)*2. Later we shall switch to the real subspace Hrp.

The functions ¢y, = ¢”%mt,n >1,m =0,£1,£2,... are a complete




286 Tacksun Jung and Q-Heung Choi

orthornormal basis for H*. Let X* denote sums over the indices m,n.
Every v € H* has a Fourier expansion

V= Z*Umn¢mn7
with X|v,n|? = ||v]|%, Ve = (v, ¢%,,,). A weak solution to the boundary
value problem (2.1) is, by definition, a function v € H satisfying Lu € H,
i.e. X¥|umn|2(m? + A2) < oo satisfying (2.1) in H.
For real a # A, the operator R = (L + o — D;)~! denoted by
h’mn

-\, Fa+im
is a compact linear operator on H* and the operator norm of R, ||R|| =
where )\, is an eigenvalue of —L closest to a.

u= Rh < Uy, =

1
la—An|’
From now on, we restrict ourselves to the real subspace H and observe
that it is invariant under R.
Our first theorem is a non-self-adjoint problem.

THEOREM 2.1. Assume that f' is bounded, that f'(+00) = « satisfies
A < a < Ay and that h € H. Then there exists sqg > 0,e¢ > 0 such
that the Leray-Schauder degree

deg(u — (—L + D) *(f(u) — s¢1 — h), B%(s0),0) = (=1)" (2.2
for s > sy. Here B} denotes a ball of radius r in H and

1

0=—(—L—a+D) ¢ = —

PROPOSITION 1. If f" is bounded, and @ = f'(—o00) < A1, then there
exist positive constants sg, € such that

deg(u — (Dy — L)' (feu) — s¢1 — h), B=(s6),0) =1

for s > sg, where § = =2— < 0.

a—\1

LEMMA 2.1. Assume that |f(u)] < a + clu|, f'(—o0), f'(+00) exist,
that f(u) — Mu > €|u| — b, and that h € H satisfies ||h|| < r, where
a,b,c,r, e are positive constants. Then there exists C' depending only on
a,b,c,r, e such that

Dy = Lu+ f(u) —s¢1 —h
w(z,t +27) = u(x,t)
satisfies |Jul| < C.
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LEMMA 2.2. Let s; € R under the assumptions of the preceding
lemma, there exists Cy > 0, depending on s; and the constants of Lemma
1, such that

deg(u — (Dy — Lu) " (f(u) — (h + s6)), B3(0),0) = 0
for s < sy and 3 > C}.

The proof of Lemma 2.2 is the same as those for the self-adjoint case,
as done in Chapter I(cf. [11]). There is no solution on the boundary of
the ball for s < sy, by the previous lemma. Therefore, by homotopy,
the degree is the same for all s < sq, and since it must be zero for large
negative s, it must be zero for all s < s;.

We have now assembled all the ingredients for our first existence the-
orem.

THEOREM 2.2. Let h € H*. Assume f’ is bounded, f'(—o0) <
A1, An < f/(+00) < Apy1. Then there exists sq so that if s > sg, equation
(2.1) has at least two 2m-periodic solutions if n is even, and at least three

if n is odd.

The proof is by now obvious. The degree on a large ball is zero. By
Theorem 2.1, we can find a ball near 6, on which the degree of the map

u— (D= L) (f(u) = (sér + h(x)))
is 1, and a ball on which the degree is zero, we have two solutions if n is
odd, and three if n is even. This concludes the proof.

3. Periodic solutions of the parabolic system

Let €2 be a bounded domain in R™ with smooth boundary 052 and let L
denote the elliptic differential operator. In this section we investigate the
existence of multiple solutions (£, 1) for perturbations of the parabolic
system with Dirichlet boundary condition

& =—LE+ 138+ 1) — s191 — ha(z, 1) in Q2 x(0,2m),
(3.1) = —Ln+ g2(3§ + 1) — s2¢1 — ha(x,t) in Q x (0,27),
=0, n=0 on 00 x(0,2n),
where we assume that hy, hy € H* and g}, g5 are bounded and 3¢} (—o0)+

gh(—00) < A1, Ay < 3g1(400) + g5(+00) < Ayp1. We also assume that
S1, S92 > 0.
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THEOREM 3.1. Let s, 89 > 0. Assume that 3A+ B < A\ and h € H*.
Then the parabolic system with Dirichlet boundary condition

€= —LE+ ABE+ ) — 8161 — ha(x,t) in Q x (0,27),
(3.2) ne = —Ln+ B(3&+n)T — sapy — ha(z,t) in Q x (0,27),
£E=0, n=0 on 09 x(0,2n),
has a unique solution (&, 7).

Proof. From problem (3.2) we get the equation
(3E+m)e = —L(B¢+n) + (3A+ B)(3¢ +n)"
(3.3) — (381 4 s2)¢1 — 3hy(x,t) — ha(x,t) in Q x (0,27),
£€=0, n=0 on 00 x(0,2m).
Put w = 3¢ + 1. Then the above equation is equivalent to
w; + Lw + (3A+ B)w*t =
(3.4) — (3814 s2)1 —3h1 — he in Q x (0,27),
w=0 on 0N

When 3A + B < A1, by the contraction mapping principle, the above
equation has a unique solution, say w;. For any F' € H, the linear
problem

u+Lu=F in Qx(0,2n),

(8:5) u=0 on 0 x(0,2m)

has a unique solution.
Hence we get the unique solution (§,7) of problem (3.2) from the
following system

ft: —L€+Aw1+—81¢1—h1(1’,t) in 2 x (0,271'),
(3.6) ne = —Ln + Bw| — sapy — ho(x,t) in Q x (0,27),
§=0, n=0 on 00Qx(0,2n).
O
THEOREM 3.2. Let s1 = s = s > 0. Assume that hy,hy € H*
and g}, g5 are bounded and 3¢;(—00) + g5(—00) < A1, A, < 3¢)(+00) +
95(4+00) < Aui1. Then there exists sy so that if s > sq, equation (3.1)

has at least two 2m-periodic solutions if n is even, and at least three if
n is odd.
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Proof. From problem (3.2) we get the equation

(3€+n)e = =L +n) + 391(36 +1) + g2(3€ + 1)
(3.7) —4s1¢1 — 3hy(x,t) — ho(z,t) in Q x (0,27),
E=0, n=0 on 002 x(0,2m).
Put w = 3¢ + 7. Then the above equation is equivalent to
wy + Lw + 3g1(w) + go(w) =
(3.8) —4s1¢1 — 3hy(x,t) — ho(x,t) in Q x (0,27),
w=0 on O
Since g}, g4 are bounded and 3¢} (—00)+g5(—00) < A1, A, < 3¢} (400)+
g5(+00) < Apt1, by Theorem 2.1 there exists sq so that if s > s, equa-
tion (3.1) has at least two 27-periodic solutions(say, w1, we2) if n is even,
and at least three solutions(say, w1, Wea, We3) if n is odd.

When n is even, we get the solutions (&£, 7) of problem (3.1) from the
following systems:

§ = —LE+ gi(wer) — s¢1 — ha(x,t) in Q x (0,27),
(3.9) Ny = —Ln + +go(wer) — s2¢1 — ha(x,t) in Q x (0,27),
£=0, n=0 on 00 x(0,2m).

St = —Lf + gl(wez) — S¢1 - hl([E,t) in  x (0, 271'),
(3.10) = —Ln+ +g2(we2) — S2¢1 — ho(z,t) in Q x (0,27),
£=0, n=0 on 0Qx(0,2n).
Therefore system (3.1) has at least two solutions if n is even.

When n is odd, we get the solutions (£, 7) of problem (3.1) from the
following systems:

& = —LE+ g1(wor) — s¢1 — ha(z,t) in Q x (0,2m),
(311) m = —L77 + +92(U}01) — 82¢1 — hg(l‘,t) in Q x (0, 27‘(’),
§=0, n=0 on 00 x(0,2m).

& = —LE+ g1(we2) — s¢1 — hy(z,t) in Q x (0,27),
(312) m = —LT] + +g2(w02) — Sggbl — hg(l’,t) in 2 % (0, 271'),
£E=0, n=0 on 00 x(0,2m).
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& = —LE+ g1(we3) — s¢1 — hy(z,t) in Q x (0,27),

(313) m = —L77 + +92(w03) — 82¢1 — hg(l‘,t) in O x (0, 271'),

§=0, n=0 on 00 x(0,2m).

Therefore system (3.1) has at least three solutions if n is odd.
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