Development of the Combined Typhoon Surge-Tide-Wave Numerical Model Applicable to Shallow Water 1. Validation of the Hydrodynamic Part of the Model

천해에 적용가능한 태풍 해일-조석-파랑 수치모델 개발 1. 해수유동 모델의 정확성 검토

  • Chun, Je-Ho (Institue of Construction and Environmental Research, Handong Global University) ;
  • Ahn, Kyung-Mo (School of Spatial Environment System Engineering, Handong Global University) ;
  • Yoon, Jong-Tae (Department of Civil Engineering, Kyungsung University)
  • 천제호 (한동대학교 건설환경연구소) ;
  • 안경모 (한동대학교 공간환경시스템공학부) ;
  • 윤종태 (경성대학교 토목공학과)
  • Published : 2009.02.28

Abstract

This paper presents the development of dynamically combined Typhoon generated surge-tide-wave numerical model which is applicable to shallow water. The newly developed model is based on both POM (Princeton Ocean Model) for the surge and tide and WAM (WAve Model) for wind-generated waves, but is modified to be applicable to shallow water. In this paper which is the first paper of the two in a sequence, we verified the accuracy and numerical stability of the hydrodynamic part of the model which is responsible for the simulation of Typhoon generated surge and tide. In order to improve the accuracy and numerical stability of the combined model, we modified algorithms responsible for turbulent modeling as well as vertical velocity computation routine of POM. Verification of the model performance had been conducted by comparing numerical simulation results with analytic solutions as well as data obtained from field measurement. The modified POM is shown to be more accurate and numerically stable compare to the existing POM.

본 논문에서는 천해에 적용 가능한 동적결합형 태풍 해일-조석-파랑 수치모델의 개발과 개발된 모델의 정확성을 검증하였다. 태풍 해일과 조석 수치모델은 POM (Princeton Ocean Model)을 기반으로 하였으며, 풍파 파랑 수치모델은 WAM (Wave Model)을 기반으로 천해에 적용할 수 있도록 수정하여 두 모델을 동적으로 결합하였다. 연속된 두 개의 논문 중에 첫 번째 논문인 본 논문에서는 해일과 조석을 수치 모의하는 해수유동 부분의 수치모의의 안정성과 정확성을 검증하였다. 수치모의의 안정성과 정확성 향상을 위하여 기존의 POM 모델의 난류 수치모델 부분과 연직속도 계산 알고리즘을 수정 보완하였다. 수정된 POM 모델의 정확성과 수치적 안정성 검증을 위하여 해석해와 실 해역에서 측정된 관측결과와 비교하였으며, 수정된 POM 모델이 기존의 POM 모델보다 수치계산의 안정성과 정확성이 개선되었음을 확인할 수 있었다.

Keywords

References

  1. 국립해양조사원(2009). 통영 조석조화상수/비조화상수, 국립 해양조사원 홈페이지, http://www.nori.go.kr/info/tide_info_harmony.asp
  2. 권석재, 강태순(2007). 남해안의 조위 및 조류거동 수치모의, 한국해안.해양공학회지, 19(3), 253-265
  3. Baumert, H. and Radach, G. (1992). Hysteresis of turbulent kinetic enrgy in nonrotational tidal flows: a model study, Journal of geophysical research, 97(c3), 3699-3677
  4. Beckmann, A. and Havidvogel, D.B. (1993). Numerical simulation of flow around a tall isolated seamount. Part I: Problem formulation and model accuracy, Journal of physical oceanography, 23, 1736-1753 https://doi.org/10.1175/1520-0485(1993)023<1736:NSOFAA>2.0.CO;2
  5. Bernsten, J. (2004). Users guide for a modesplit -coordinate numerical ocean model, version 4.1, Department of mathematics, University of Bergen, Johs. Bruns gt.12 N-5008 Bergen, Norway
  6. Blumberg, A.F. and Mellor, G.L. (1987). A description of a three-dimensional coastal ocean circulation model, in Threedimensional coastal ocean models, Vol.4 edited by N. Heaps, 208, American geophysical union, Washington D.C.
  7. Blumberg, A.F. (2002). A primer for ECOMSED version 1.3 users manual, HydroQual, Inc., One Lethbridge Plaza Mahwah, N.J. 0730 U.S.A.
  8. Boon, J. (2004). Secrets of the tide:tide and tidal current analysis and applications, storm surges and sea level trends, Horwood publishing limited
  9. Burchard, H., Peterson, H. and Rippeth, T.P. (1998). Comparing the performance of the Mellor-Yamada and the twoequation turbulence models, Journal of geophysical research, 103(c5), 10543-10554 https://doi.org/10.1029/98JC00261
  10. Choi, B.H., Eum, H.M., Kim, H.S., Jeong, W.M. and Shim, J.S. (2004). Wave-tide-surge coupled simulation for typhoon Maemi, Workshop of waves and storm surges around Korean peninsula, 121-144
  11. Deleersnijder, E. and Luyten, P. (1994). On the practical advantages of the quasi-equilibrium version of Mellor and Yamada level 2.5 turbulence closure applied to marine modelling, Applied Mathematical modelling, 18, 281-287 https://doi.org/10.1016/0307-904X(94)90336-0
  12. Huang, W. and Spaulding, M. (1995). 3D Model of estuarine circulation and water quaility induced by surface discharges, Journal of hydraulic engineering, 121(4), 300-311 https://doi.org/10.1061/(ASCE)0733-9429(1995)121:4(300)
  13. Jacobson, M.Z. (2004). Fundamentals of atmospheric modeling, Cambridge university press
  14. Jankowski, J.A. (1999). A non-hydrostatic model for free surface flows, Dissertation, Institute fr Stroemungschmechanik, Universitaet of Hannover, Bericht Nr. 56/1999
  15. Kato, H. and Phillips, O.M. (1969). On the penetration of a turbulent layer into stratified fluid, Journal of fluid mechanics, 37, 643-655 https://doi.org/10.1017/S0022112069000784
  16. Kantha, L.H. and Clayson, C.A. (2000). Numerical models of oceans and oceanic processes, Academic Press
  17. Kowalik, Z. and Murty, T.S. (1993). Numerical modeling of ocean dynamics, World Scientific Publishing Co. Pte. Ltd.
  18. Matsumoto, K., Takanezawa, T. and Ooe, M. (2000). Ocean tide models development by assimilating TOPEX/POSEIDON altimeter data into hydrodynamic model : a global model and a regional model around Japan, Journal of Oceanography, 56, 567-581 https://doi.org/10.1023/A:1011157212596
  19. Mellor, G.L. (2003) Users guide for a three-dimensional, primitive equation, numerical ocean model, Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ 08544-0710
  20. Price, J.F. (1979). On the scaling of stress-driven entrainment experiments, Journal of fluid mechanics, 90, 509-529 https://doi.org/10.1017/S0022112079002366
  21. Rodi, W. (2000). Turbulence models and their application in hydraulics, A.A. Balkema, Rotterdam
  22. The United Kingdom of Hydrographic office (2004). Admirality tide tables, volume 4, pacific ocean, The United Kingdom of Hydrographic office