DOI QR코드

DOI QR Code

Design of Cavity-Backed Microstrip Dipole Array Antennas with Enhanced Front-to-Back Ratio

전후방비가 개선된 Cavity-Backed 마이크로스트립 다이폴 배열 안테나 설계

  • You, Dong-Gyun (Dept. of Electronic Engineering, Dankook University) ;
  • Jeon, Jung-Ik (Dept. of Electronic Engineering, Dankook University) ;
  • Lee, Hyoung-Ki (Dept. of Electronic Engineering, Dankook University) ;
  • Choi, Hak-Keun (Dept. of Electronic Engineering, Dankook University)
  • Published : 2009.01.31

Abstract

In this paper, a TRS band(Trunked Radio System: $806{\sim}866\;MHz$) array antenna has a good front-to-back ratio characteristics for the mobile communication base station is proposed. The proposed array antenna is composed of the $5{\times}3$ radiated elements which are the microstrip dipole antennas with the cavity-backed reflector. For the validity of the proposed antenna, the $5{\times}3$ array antenna is designed, fabricated, and its radiation characteristics are measured. As a result of measurements, the antenna gain is over 13.3 dBi and the front-to-back ratio is over 40 dB at the useable frequency band. We confirm that the designed antenna can be used as the mobile communication base station antenna with the excellent back lobe characteristics.

본 논문에서는 TRS(Trunked Radio System: $806{\sim}866\;MHz$) 대역의 전후방비 특성이 우수한 이동통신 기지국용 배열 안테나를 제안하였다. 제안된 배열 안테나는 양호한 전후방비 특성을 갖도록 후면에 캐비티를 둔 마이크로스트립 다이폴 안테나를 복사 소자로 하고, 이를 $5{\times}3$ 배열한 안테나이다. 제안된 안테나의 타당성을 보이기 위하여 $5{\times}3$ 배열 안테나를 설계 제작하고 복사 특성을 측정하였다. 복사 특성 측정 결과, 제안된 배열 안테나는 사용 주파수 범위에서 이득 13.3 dBi 이상, 전후방비 40 dB 이상을 갖는 것으로 나타났다. 이로서 본 논문에서 제안된 배열 안테나는 후방 로브 특성이 우수한 기지국 안테나로 널리 이용될 수 있음이 확인되었다.

Keywords

References

  1. 박영호, 신재철, 천창율, "1,900 MHz 대역 중계기 안테나의 격리도 개선", 한국정보통신설비학회 하계학술대회 논문집, pp. 289-292, 2003년 8월
  2. W. T. Slingsby, J. P. McGeehan, "Antenna isolation measurements for on-frequency radio repeaters", 1995 Antennas Propagat. ICAP, vol. 1, pp. 239-243, Apr. 1995 https://doi.org/10.1049/cp:19950300
  3. A. Kumar, H. D. Hristov, Microwave Cavity Antennas, Artech House, ch. 1-2, 1989
  4. J. Thaysen, K. B. Jakobsen, and H.-R. Lenler-Eriksen, "Wideband cavity-backed spiral antenna for stepped frequency ground penetrating radar", IEEE AP-S International Symposium, vol. 1, pp. 418-421, 2005
  5. P. K. Singhal, S. Banerjee, "A cavity-backed rectangular patch antenna", IEEE Trans. Antennas Propagat and EM Theory, 2003 6th International Symposium, pp. 112-115, Nov. 2003
  6. J. Grzyb, D. Liu, and B. Gaucher, "Packaging effects of a broadband 60 GHz cavity-backed folded dipole superstrate antenna", IEEE AP-S International Symposium, pp. 4365-4368, Jun. 2007
  7. B. A. Brynjarsson, T. Syversen, "Cavity-backed, aperture coupled microstirp patch antenna", IEEE International Conference on AP, vol. 2, pp. 715-718, 1993
  8. J. Gong, J. L. Volakis, "Analysis of nonrectangular cavity-backed patch antenna using edge-based hybrid finite element method with BiCG-FFT solver", IEEE AP-S International Symposium, vol. 2, pp. 960-963, Jul. 1993
  9. M. A. Gonzalez de Aza, J. A. Encinar, and J. Zapata, "Radiation pattern computation of cavity-backed and probe-fed stacked microstrip patch arrays", IEEE Trans. Antennas Propagat., vol. 48, pp. 502-509, Apr. 2000 https://doi.org/10.1109/8.843663
  10. Frank Zavosh, James T. Aberle, "Infinite phased arrays of cavity-backed patches", IEEE Trans. Antennas Propagat., vol. 42, no. 3, pp. 390-398, Mar. 1994 https://doi.org/10.1109/8.280726
  11. R. J. Mailloux, Phased Array Antenna Handbook, Artech House, ch. 1, 1994
  12. W. L. Stutzman, G. A. Thiele, Antenna Theory and Design, John Willey, New York, ch. 3, 7, 1981
  13. C. A. Balanis, Antenna Theory Analysis and Design, John Wiley, New York, ch. 6, 7, 1982