Anti-oxidative activity of the herb mixture prescribed to induce blood glucose level and effect on the differentiation of 3T3-L1 fibroblast

혈당저하를 위해 처방된 천연물 복합제의 항산화 활성 및 3T3-L1 세포의 분화에 미치는 영향

  • Kim, Jung-Ok (Daegu Gyeongbuk Institute for Oriental Medicine Industry) ;
  • Kim, Jeung-Bea (Faculty of Environmental Studies, Keimyung University) ;
  • Kim, Hak-Yoon (Faculty of Environmental Studies, Keimyung University)
  • Published : 2009.02.28

Abstract

We prepared five different kinds of herb mixtures prescribed for hypoglycemic effect. And the physicochemical properties of their water extracts were assessed to identify functional materials. Yields were in the range $19.52{\sim}29.79%$. Total phenolics and flavonoid contents were $349.24{\sim}1,752.21\;mg%$ and $163.06{\sim}1,118.47\;mg%$, respectively, and herb mixtures No. 2, 3 and 5 showed particularly high levels greater than 1,000 mg%. Electron-donating ability was best in herb mixtures showing high levels of total phenolics and flavonoids. Nitrite-scavenging abilities were more than 70% in herb mixtures No. 2 and 5, and decreased as pH increased. Herb mixture extracts strongly inhibited differentiation of 3T3-L1 fibroblasts, with potencies ranked in the herb mixture order 5, 1, 4, 3, and 2. The five different kinds of herb mixtures prescribed for their hypoglycemic effects may be useful as functional food materials.

혈당저하를 위한 천연물복합제를 한의학 처방 및 문헌 등을 기초로 하여 구성하고, 기능성 식품 소재로서의 이용가능성을 조사하기 위하여 추출물의 이화학적 특성을 조사하였다. 천연물복합제 5가지 추출물의 수율은 $19.52{\sim}29.79%$의 범위로 나타났으며, 총페놀성 화합물 함량은 $349.24{\sim}1752.21\;mg%$, 총 플라보노이드 함량은 $163.06{\sim}1,118.47\;mg%$의 범위로 조사되었다. 특히 2번, 3번 및 5번 복합제에서 1,000 mg% 이상의 높은 함량을 나타내었으며, 전자공여능 또한 이들 복합제에서 높은 활성을 보여주었다. 아질산염 소거능은 2번 및 5번 천연물복합제가 pH 1.2에서 70% 이상의 높은 활성을 보여주었으며, pH가 증가할 수록 감소하였다. 인슐린성 물질의 함유정도를 조사하기 위하여 섬유아세포 3T3-L1의 지방세포로의 분화정도를 측정한 결과, 천연물복합제 5가지 추출물 중 5, 1, 4, 3, 2번의 순으로 높은 값을 나타내었다. 한편 이들 천연물복합제의 기능성 식품으로 이용 가능성을 검증하기 위한 추가적인 생리활성 및 효능 연구를 진행할 필요성이 있다고 판단된다.

Keywords

References

  1. King, H., Aubert, R.E. and Herman, W.H. (1998) Global berden of diabetes, 1995-2025: prevalence, nemerical estimates, and projections. Diabetes Care, 21, 1414-1431 https://doi.org/10.2337/diacare.21.9.1414
  2. Stratton, I.M., Adler, A.I., Neil, H.A., Matthews, D.R., Manley, S.E., Cull, C.A., Hadden, D., Turner, R.C. and Holman, R.R. (2000) Association of glycaemia with macrovascular and macrovascular complications of type 2 diabetes (UKPDS 35): prospective observational study. Br. Med. J., 321, 405-412 https://doi.org/10.1136/bmj.321.7258.405
  3. Leahy, J.L. (2005) Pathogenesis of type 2 diabetes mellitus. Arch. Med. Res., 36, 197-209 https://doi.org/10.1016/j.arcmed.2005.01.003
  4. Georg, P. and Ludvik, B. (2000) Lipids and diabetes. J. Clin. Basic Cardiol., 3, 159-162
  5. Bottini, N., Vang, T., Cucca, F. and Mustelin, T. (2006) Role of PTPN22 in type 1 diabetes and other autoimmune diseases. Semin. Immunol., 18, 207-213 https://doi.org/10.1016/j.smim.2006.03.008
  6. Warren, R.E. (2004) The stepwise approach to the management of type 2 diabetes. Diabetes Res. Clin. Pract., 65, 53-58 https://doi.org/10.1016/j.diabres.2004.07.002
  7. Schmidit, D.D., Frommer, W., Junge, B., Muller, L., Wingender, W., Truscheit, E. and Schäfer, D. (1977) alpha-Glucosidase inhibitors. New complex oligosaccharides of microbial origin. Naturwissenschaften, 64, 535-536 https://doi.org/10.1007/BF00483561
  8. Standl, E., Baumgartl, H.J., Fuchtenbusch, M. and Stemplinger, J. (1999) Effect of acarbose on additional insulin therapy in type 2 diabetic patients with late failure of sulphonylurea therapy. Diabetes Obes. Metab., 1, 215-220 https://doi.org/10.1046/j.1463-1326.1999.00021.x
  9. Park, K.J., Oh, Y.J., Lee, S.Y., Kim, H.S. and Ha, H.C. (2007) Anti-diabetic effect of crude polysaccharides from Grifola frondosa in KK-Ay diabetic mouse and 3T3-L1 adipocyte. Korean J. Food Sci. Technol., 39, 330-335
  10. Marles, R. and Farnsworth, N. (1995) Antidiabetic plants and their active constituents. Phytomedicine, 2, 137-165 https://doi.org/10.1016/S0944-7113(11)80059-0
  11. Yeh, G.Y., Eisenberg, D.M., Kaptchuk, T.J. and Phillips, R.S. (2003) Systematic review of herbs and dietary supplements for glycemic control in diabetes. Diabetes Care, 26, 1277-1294 https://doi.org/10.2337/diacare.26.4.1277
  12. Cheng, A.Y. and Fantus, I.G. (2005) Oral antihyperglycemic therapy for type 2 diabetes mellitus. Can. Med. Assoc. J., 172, 213-226 https://doi.org/10.1503/cmaj.1031414
  13. Matsui, T., Yoshimoto, C., Osajima, K., Oki, T., Osajima, Y., Oki, T. and Osajima, Y. (1996) In vitro survey of $\alpha$-glucosidase inhibitory food components. Biosci. Biotechnol. Biochem., 60, 2019-2022 https://doi.org/10.1271/bbb.60.2019
  14. Bansky, D. and Barolet, R. (1990) Chinese Herbal Medicine Formulas and Strategies. Eastland Press, Seattle, p. 7-8
  15. Kim, J.G., Kang, Y.M., Eum, G.S., Ko, Y.M. and Kim, T.Y. (2003) Antioxidative activity and antimicrobial activity of extracts from medicinal plants. J. Agri. Life Sci., 37, 69-75
  16. Goleberg, I. (1994) Functional foods. Champman & Hall Press. New York. USA. p. 350-550
  17. Sadaki, O. (1996) The development of functional foods and material. Bio-industry, 13, 44-50
  18. Seog, H.M., Jung, C.H., Kim, Y.S. and Park, H.S. (2005) Phenolic acids and antioxidant activities of wild ginseng (Panax ginseng C.A. Meyer) leaves. Food Sci. Biotechnol., 14, 371-374
  19. Chan, K. (1995) Progress in traditional Chinese medicine. Trends Pharmacol. Sci., 16, 182-187 https://doi.org/10.1016/S0165-6147(00)89019-7
  20. Amerinem, M.A. and Ough, C.S. (1958) Method for Analysis of Musts and Win. Wiley & Sons, New York. p. 176-180
  21. Lee, J.M., Son, E.S., Oh, S.S. and Han, D.S. (2001) Contents of total flavonoid and biological activities of edible plants. Korean J. Dietary Culture, 16, 504-514
  22. Blois, M.S. (1958) Antioxidant determination by the use of a stable free radical. Nature, 181, 1199-1200 https://doi.org/10.1038/1811199a0
  23. Kato, H., Lee, I.E., Chyuen, N.V., Kim, S.B. and Hayase, F. (1987) Inhibitory of nitrosamine formation by nondialyzable melanoidins. Agric. Biol. Chem., 51, 1333-1338 https://doi.org/10.1271/bbb1961.51.1333
  24. Kim, D.S., Ahn, B.W,, Yeum, D.M., Lee, D.H., Kim, S.B. and Park, Y.H. (1987) Degradation of carcinogenic nitrosamine formation factor by natural food components-1. Nitrite-scavenging effects of vegetable extracts. Bull. Korean Fish. Soc., 20, 463-468
  25. Dennis, J.E. and Caplan, A.I. 1996. Differentiation potential of conditionally immortalized mesenchymal progenitor cells from adult marrow of H-2Kb-tsA58 transgenic mouse. J. Cell Physiol., 167. 523-538 https://doi.org/10.1002/(SICI)1097-4652(199606)167:3<523::AID-JCP16>3.0.CO;2-4
  26. Kim, H.J., Jun, B.S., Kim, S.K., Cha, J.Y. and Cho, Y,S. (2000) Polyphenolic compound content and antioxidative activities by extracts from seed, sprout and flower of safflower. J. Korean Soc. Food Sci. Nutr., 29, 1127-1132
  27. Whang, H.J., Han, W.S., Yoon, K.R. (2001) Quantitative analysis of total phenolic content in apple. Anal. Sci. Technol., 14, 377-383
  28. Hyun, S.H., Jung, S.K., Jwa, M.K., Song, C.K., Kim, J.H. and Lim, S.B. (2007) Screening of antioxidants and cosmeceuticals from natural plant resources in Jeju Island. Korean J. Food Sci. Technol., 39, 200-208
  29. Choi, Y.M., Kim, M.H., Shin, J.J., Park, J.M. and Lee, J.S. (2003) The antioxidant acitivities of the some commercial teas. J. Korean Soc. Food Sci. Nutr., 32, 723-727 https://doi.org/10.3746/jkfn.2003.32.5.723
  30. Choi, J.H. and Oh, S.K. (1985) Studies on the anti-ging of Korean Ginseng. Korean J. Food Sci. Technol., 17, 506-515
  31. Kang, Y.H., Park, Y.K. and Lee, G.D. (1996) The nitrite scavenging and electron donating ability of phenolic compounds. Korean J. Food Sci. Technol., 28, 232-239
  32. Lee, S.O., Lee, H.J., Yu, M.H., Im, H.G. and Lee, I.S. (2005) Total polyphenol contents and antioxidant activities of methanol extracts from vegetables produced in Ullung Island. Korean J. Food Sci. Technol., 37, 233-240
  33. Chung, H.J. (1999) Antioxidative effect of ethanolic extracts of some tea materials on red pepper seed oil. J. Korean Soc. Food Sci. Nutr., 28, 1316-1320
  34. Hotchkiss, J.H. (1998) A review of current literature on N-nitroso compounds in foods. Adv. Food Res., 31, 54-115 https://doi.org/10.1016/S0065-2628(08)60166-4
  35. Macrae, R., Robinson, R.K. and Sadler, M.J. (1993) Encyclopedia of food science food technology and nutrition. Academic press, New York, USA. p. 3240-3249
  36. Haugen, F., Zahid, N., Dalen, K.T., Hollung, K., Nebb, H.I. and Drevon, C.A. (2005) Resistin expression in 3T3-L1 adipocytes is reduced by arachidonic acid. J. Lipid Res., 46, 143-153 https://doi.org/10.1194/jlr.M400348-JLR200
  37. Tenney, R., Stansfield, K. and Pekala, P.H. (2005) Interleukin 11 signaling in 3T3-L1 adipocytes. J. Cell Physiol., 202, 160-166 https://doi.org/10.1002/jcp.20100
  38. Seika, K. and Zheng, Y. (1997) Effect of medical plant on peradipocyte differentiation. J. Traditional Med., 14, 356-357
  39. Broadhust, C.L., Polansky, M.M. and Anderson, R.A. (2000) Insulin-like biological activity of culinary and medicinal plant aqueous extracts in vitro. J Agric. Food Chem., 48, 849-852 https://doi.org/10.1021/jf9904517
  40. Ju, Y.S. and Ko, B.S. (2002) Screening of insulin-like substances from traditional herbs if diabetes prescription in Donguibogam. J. Korean Soc. Agric. Chem. Biotechnol., 45, 47-52