A Study on the Hydrothermal Vent in the Mariana Trench using Magnetic and Bathymetry Data

지자기자료 및 정밀해저지형자료를 이용한 마리아나 해구 해저 열수광상 연구

  • Kim, Chang-Hwan (Dokdo Research Center, East Sea Research Institute, KORDI) ;
  • Kim, Ho (Dokdo Research Center, East Sea Research Institute, KORDI) ;
  • Jeong, Eui-Young (Dokdo Research Center, East Sea Research Institute, KORDI) ;
  • Park, Chan-Hong (East Sea Research Institute, KORDI) ;
  • Go, Young-Tak (Deep-sea & Marine Georesources Research Department, KORDI) ;
  • Lee, Seung-Hoon (Dokdo Research Center, East Sea Research Institute, KORDI)
  • 김창환 (한국해양연구원 동해연구소 독도전문연구센터) ;
  • 김호 (한국해양연구원 동해연구소 독도전문연구센터) ;
  • 정의영 (한국해양연구원 동해연구소 독도전문연구센터) ;
  • 박찬홍 (한국해양연구원 동해연구소) ;
  • 고영탁 (한국해양연구원 심해.해저자원연구부) ;
  • 이승훈 (한국해양연구원 동해연구소 독도전문연구센터)
  • Published : 2009.02.28

Abstract

Detailed bathymetry and magnetic survey data for NW Rota-1 and Esmeralda Bank obtained by R/V Onnuri of Korea Ocean Research & Development Institute in September 2007 were analyzed to investigate bathymetry and magnetic characteristics of the study area and to estimate the locations of possible hydrothermal vents. The shape of NW Rota-1 is corn type, and the depth of the summit is about 500 meter b.s.l. NW Rota-1 shows irregular topographic expression in the southeastern part. The shape of Esmeralda Bank is caldera type opened in the western part. The summit is very shallow, about 50 meter b.s.l. The western part of Esmeralda Bank is more steeper and topographic irregular than the eastern part, and have the valley made by erosion or collapse. The magnetic anomaly patterns of NW Rota-1 and Esmeralda Bank show low anomalies over the north and high anomalies over the south. The magnetic anomalies are steep over the summits and gently smooth over the deep bottom. The low magnetization zone occurs over the summit of NW Rota-1 and is surrounded by the high zones correlated with its crater. Two low magnetization zones are located in the summit and westside of Esmeralda Bank. The low magnetization zones of the summits of NW Rota-1 and Esmeralda Bank suggest the possible existence of hydrothermal vent.

Mariana 해령 후열도 분지내에 위치하고 있는 NW Rota-1과 Esmerala Bank의 지형 및 자력특성을 연구하고 열수분출대의 위치를 추정하기 위하여 2007년 9월에 한국해양연구원 온누리호를 이용하여 획득한 정밀해저지형자료 및 해상자력탐사자료를 함께 분석하였다. NW Rota-1 해산의 전체적인 모양은 원뿔 형태이며, 정상부의 수심은 약 500 m이다. NW Rota-1 해산에서는 급경사나 큰 계곡과 같은 지형적 특성은 보이지 않지만 남동쪽 방향에 불규칙한 지형이 발달해 있다. Esmeralda Bank의 전체적인 모양은 서쪽 방향이 열린 칼데라의 형태를 띠고 있다. Esmeralda Bank의 정상부 수심은 약 50 m로 매우 얕다. Esmeralda Bank의 서쪽부분은 동쪽부분보다 경사가 더 급하고 지형의 기복이 심하게 나타나며, Bank 생성 후 무너져 내렸거나 침식에 의해 형성된 것으로 보이는 계곡이 관찰된다. NW Rota-1 해산과 Esmeralda Bank의 자기이상분포는 두 지역 모두 북쪽에 저이상이 나타나고 남쪽에 고이상이 분포하며 정상부에서는 급격한 자기변화를 보이고 수심이 깊은 기저부에서는 완만한 자기변화가 나타난다. NW Rota-1 해산 정상부에서 저자화강도이상대가 나타나며 이 저이상대를 둘러싸고 남쪽과 북쪽으로 주변보다 높은 자화강도 이상이 관측되는데 이는 이 해저산의 화구륜과 관계가 있는 것으로 생각된다. Esmeralda Bank는 정상부와 서쪽에 저자화강도이상대가 분포하고 있다. NW Rota-1와 Esmeralda Bank 정상부의 저자화강도이상대에서 열수분출대가 존재할 가능성이 있다.

Keywords

References

  1. 민경덕, 서정희, 권병두, 1987. 응용지구물리학. 우성문화사, 772 pp
  2. 한국해양연구원, 2007. 북서태평양이 한반도 주변해(대한해협)에 미치는 영향 연구. 한국해양연구원, BSPP 07401-1917-1, 783 pp
  3. Baker, E.T. and C.R. German, 2004. On the Global Distribution of Hydrothermal Vent Fields, In: Mid-Ocean Ridges: Hydrothermal Interactions Between the Lithosphere and Oceans, Geophysical Monograph Series 148, edit by German, C.R., J. Lin and L.M. Parson. America Geophysical Union, pp. 245−266
  4. Baker, E.T., J.A. Resing, S.l. Walker, F. Marinez, B. Taylor and K. Nakamura, 2006. Abundant hydrothermal venting along meltrich and melt-free ridge segments in the Lau back-arc basin. Geophys. Res. Lett., 33: L07308, doi:10.1029/2005GL025283
  5. Bibee, L.D., G.G. Shor and R.S. Lu, 1980. Inter-Arc spreding in the Mariana Trough. Mar. Geol., 35: 183−197 https://doi.org/10.1016/0025-3227(80)90030-4
  6. Bird, P, 2003. An updated digital model of plate boundaries. Geochem. Geophys. Geosys., 4: 1027, doi:10.1029/2001GC000252
  7. Cloud, P.E., R.G. Schmidt Jr. and H.W. Burke, 1956. Geology of Saipan, Mariana Islands - Part 1. General Geology. U. S. Gel. Sur. Prof. Paper 280-A, 126 pp
  8. Corliss, J.B., M. Lyle and J. Dymond, 1978. The chemistry of hydrothermal mounds near the Galapagos rift. Earth Planet. Sci. Lett., 40: 12−24 https://doi.org/10.1016/0012-821X(78)90070-5
  9. Embley, R.W., E.T. Baker, W.W. Chadwick Jr., J.E. Lupton, J.E. Resing, G.J. Massoth and K. Nakamura, 2004. Explorations of Marina arc volcanoes reveal new hydrotheral systems. EOS, 85: 37−40 https://doi.org/10.1029/2004EO040001
  10. Embley, R.W., W.W. Chadwick Jr., E.T. Baker, D.A. Butterfield, J.A. Resing, C.E.J. de Ronde, V. Tunnicliffe, J.E. Lupton, S.K. Juniper, K.H. Rubin, R.J. Stern, G.T. Lebon, K. Nakamura, S.G. Merle, J.R. Hein, D.A. Wiens and Y. Tamura, 2006. Long-term eruptive activity at a submarine arc volcano. Nature, 441: 494−497 https://doi.org/10.1038/nature04762
  11. Eulcia, G. and J. Escartn, 1999. Crustal accretion at mid-cean ridges and backarc spreading centers: Insights from the Mid-Atlantic Ridge, the Bransfield basin and the North Fiji Basin. Contr. Sci., 1: 175−192
  12. German, C.R. and K.L. Von Damm, 2004. Hydrothermal Processes. In: Treatise on Geochemistry, 6, edit by Holland H.D and K.K. Turekian, Elsevier, pp. 181−222
  13. Hart, S.R., W.E. Glassley and D.E. Karig, 1972. Baslats and Sea Floor Spreading behind the Mariana Island Arc. Earth Planet. Sci. Lett., 15: 12−18 https://doi.org/10.1016/0012-821X(72)90023-4
  14. Honza, E., 1991. The Tertiary arc chain in the western Pacific. Tectonophy., 187: 285−303 https://doi.org/10.1016/0040-1951(91)90425-R
  15. Hussong, D.M. and S. Uyeda, 1981. Tectonic Processes and history of the Mariana Arc, A synthesis of the results of Deep Sea Drilling Leg 60. Init. Rep. DSDP., 60: 909−929
  16. Karig, D.E., 1971. Structural History of the Mariana Island Arc System. Geol. Soc. Amer. Bull., 82: 323−344 https://doi.org/10.1130/0016-7606(1971)82[323:SHOTMI]2.0.CO;2
  17. Kennett, J., 1982. Marine Geology, Prentice-Hall, 747 pp
  18. Kroenke, L.W., 1984. Introduction. In: Cenozoic Tectonic Development of the Southwest Pacific, Tech. Bull., 6, edit by Kroenke., L.W., UN ESCAP, CCOP/SOPAC, pp. 1−11
  19. Meijer, A., 1974. A Study of the Geochemistry of the Mariana Island Arc System and Its Bearing on the Genesis and Evolution of Volcanic Arc Magmas. Unpublished Ph. D. thesis, U. C. Santa Barbara, 214 pp
  20. Morgan, P.J. and Y.J. Chen, 1993. The genesis of oceanic crust: Magma injection, hydrothermal circulation, and crustal flow. J. Geophys. Res., 98: 6283−6297 https://doi.org/10.1029/92JB02650
  21. Mller, R.D., W.R. Roest, J.Y. Royer, L.M. Gahagan and J.G. Sclater, 1997. Digital isochrons of the world's ocean floor. J. Geophys. Res., 102: 3211−3214 https://doi.org/10.1029/96JB01781
  22. Nabighian, M.N., 1972. The analytic signal of two-dimensional magnetic bodies with polygonal cross-section: Its properties and use for automated anomaly interpretation. Geophy., 37: 507−517 https://doi.org/10.1190/1.1440276
  23. Nabighian, M.N., 1974. Additional comments on the analytic signal of two-dimensional magnetic bodies with polygonal cross-section. Geophys., 39: 85−72 https://doi.org/10.1190/1.1440416
  24. Parker, R.L. and S.P. Huestis, 1974. The inversion of magnetic anomalies in the presence of topography. J. Geophys. Res., 79: 1587−1593 https://doi.org/10.1029/JB079i011p01587
  25. Stern R.J. and L.D. Bibee, 1984. Esmeralda Bank: Geochemistry of an active submarine volcano in the Mariana Island Arc. Contr. Mineral Petr., 86: 159−169 https://doi.org/10.1007/BF00381843
  26. Seama, N. and T. Fujiwara, 1993. Geomagnetic anomalies in the Mariana Trough $18^{\circ}$N. In: Preliminary report of the Hakuhomaru cruise KH92-1, edit by Segawa., J. Ocean Res. Inst. Univ. Tokyo, pp. 70−73
  27. Smith, D.K., M.A. Tivey, H. Schouten and J.R. Cann, 1999. Locating the spreading axis along 80 km of the Mid-Atlantic Ridge south of the Atlantis Transform. J. Geophys. Res., 104: 7599−7612 https://doi.org/10.1029/1998JB900064
  28. Tamaki, K. and E. Honza, 1991. Global tectonics and formation of marginal basins: Role of the western Pacific. Episodes, 14: 224−230
  29. Tivey, M.A., P.A. Rona, and H. Schouten, 1993. Reduced crustal magnetization beneath the active sulfide mound, TAG hydrothemal field, Mid-Atlantic Ridge $26^{\circ}$$\'{y}$N. Earth Planet. Sci. Lett., 115: 101−115 https://doi.org/10.1016/0012-821X(93)90216-V
  30. Tivey, M.A., 1994. Fine-scale magnetic anomaly field over the southern Juan de Fuca Ridge: Axial magnetization low and implications for crustal structure. J. Geophs. Res., 99: 4833−4855 https://doi.org/10.1029/93JB02110
  31. Tivey, M.A, H. Schouten, and M.C. Kleinrock, 2003, A near-bottom magnetic survey of the Mid-Atlantic Ridge axis at $26^{\circ}$N: Implications for the tectonic evolution of the TAG segment. J. Geophys. Res., 108: B5, 2277 https://doi.org/10.1029/2002JB001967
  32. Tracey, J.I., S.O. Schlanger, J.T. Stark, D.B. Doan and H.G. May, 1963. General Geology of Guam. U. S. Gel. Sur. Prof. Paper 403-A, 104 pp