Current Status of Photobiological Hydrogen Production Technology Using Unicellular Marine Cyanobacterial Strains

단세포성 해양남세균 종주를 이용한 광생물학적 수소생산 기술

  • Park, Jong-Woo (Department of Oceanography, Kunsan National University) ;
  • Kim, Jae-Man (Department of Oceanography, Kunsan National University) ;
  • Yih, Won-Ho (Department of Oceanography, Kunsan National University)
  • Published : 2009.02.28

Abstract

Among various microscopic organisms producing photobiological hydrogen, cyanobacteria have long been recognized as the promising biological agents for hydrogen economy in 21 century. For photobiological production of hydrogen energy, marine unicellular $N_2$-fixing cyanobacteria have been evaluated as an ideal subgroup of Cyanophyceae. To develope the hydrogen production technology using unicellular $N_2$-fixing cyanobacteria, 3 important factors are pre-requisite: 1) isolation of the best strain from marine natural environment, 2) exploration on the strain-specific optimal conditions for the photobiological hydrogen production, and finally 3) application of the molecular genetic tools to improve the natural ability of the strain to produce hydrogen. Here we reviewed the recent research & development to commercialize photobiological hydrogen production technology, and suggest that intensive R&D during next 10-15 years should be imperative for the future Korean initiatives in the field of the photobiological hydrogen production technology using photosynthetic marine unicellular cyanobacterial strains.

광생물학적 수소생산 잠재력을 가진 다양한 미소생물 가운데, 남세균은 21세기의 수소경제 시대에 적합한 생물군으로 오랫동안 알려져 왔다. 광생물학적으로 수소에너지를 생산하게 될 경우, 해양 단세포성 질소고정 남세균은 남세균류의 하부 분류군들 가운데 가장이상적인 종류의 하나로 평가되고 있다. 단세포성 질소고정 남세균을 이용한 수소생산 기술을 개발하기 위해 반드시 고려해야 할 3가지 사항은 1) 자연계에 존재하는 최우수 수소생산 종주의 확립 2) 광생물학적 수소생산을 뒷받침하는 종주-특이적 최적조건의 탐색 3) 유전학적 방법을 이용한 수소생산 종주의 개량 등이다. 본고에서는 광생물학적 수소생산기술의 상업화를 향한 최근의 연구 개발 추세를 돌아보고, 해양 단세포성 남세균 종주를 이용한 광생물학적 수소생산 기술 분야에서 한국의 세계선도적 지위 확보를 위해서는 향후 10-15년간 집중적인 연구 개발이 절실함을 제안하고자 한다.

Keywords

References

  1. 김미선, 2005. 생물학적인 방법에 의한 수소생산. 수소에너지 정보 제 10호, 수소에너지 사업단. pp. 1−14
  2. 김재만, 2008. 한국 연안산 질소고정 남세균 종주들의 세포주기동조화와 광생물학적 수소생산능력. 군산대학교 대학원. 석사학위논문. 52 pp
  3. 박종우, 2007. 한국 연안산 남세균 종주들의 광생물학적 수소생산 능력. 군산대학교 대학원. 석사학위논문. 53 pp
  4. 박종우, 김재만, 박장호, 이원호. 2008. 국내 연안산 남세균 종주의 수소생산능 최적화: 1. 최적 수소생산을 위한 적정세포 농도. 2008년도 한국해양과학기술협의회 공동 학술대회 초록집(발표명, BP-23). 서귀포, 제주, p. 198
  5. 윤순진, 2002. 지속가능한 발전과 21세기 에너지 정책 - 에너지 체제 변환 및 필요성과 에너지정책의 바람직한 전환방향. 한국 행정학보 36(3), 147−167
  6. Almon, H., P. Boger, 1998. Hydrogen metabolism of the unicellular cyanobacterium Chroococcidiopsis thermalis ATCC29380. FEMS Microbiol Lett., 49: 445−449 https://doi.org/10.1111/j.1574-6968.1988.tb02773.x
  7. Asada Y., J. Miyake, 1999. Photobiological hydrogen production. Journal of Bioscience and Bioengineering, 88(1): 1−6 https://doi.org/10.1016/S1389-1723(99)80166-2
  8. Benemann, J.R., 2000. Hydrogen production by microalgae. Journal of Applied Phycology, 12: 291−300 https://doi.org/10.1023/A:1008175112704
  9. Berberoglu, H., J. Jay, L. Pilon, 2008. Effect of nutrient media on photobiological hydrogen production by Anabaena variabilis ATCC 29413. International Journal of Hydrogen Energy, 33: 1172−1184 https://doi.org/10.1016/j.ijhydene.2007.12.036
  10. Borodin, V.B., K.K. Rao, D.O. Hall, 2002. Manifestation of behavioural and physiological functions of Synechococcus sp. Miami BG 043511 in a photobioreator. Marine Biology, 140: 455−463 https://doi.org/10.1007/s00227-001-0721-5
  11. Chen, M., R.G. Hiller, C.J. Howe, A.W.D. Larkum, 2005. Unique origin and lateral transfer of prokaryotic chlorophyll-b and chlorophyll- d light-harvesting systems. Molecular Biology and Evolution, 22(1): 21-28 https://doi.org/10.1093/molbev/msh250
  12. Chin, W.C., V.M. Orellana, I. Quesada, P. Verdugo, 2004. Secretion in unicellular Marine phytoplankton: demonstration of regulated exocytosis in Phaeocystis globosa. Plant Cell Physiol., 45(5): 535−542 https://doi.org/10.1093/pcp/pch062
  13. Das, D., T.N. Veziroglu, 2001. Hydrogen production by biological process: a survey of literature. International Journal of Hydrogen Energy, 26: 13−28 https://doi.org/10.1016/S0360-3199(00)00058-6
  14. Dutta, D., D. De, S. Chaudhuri, S.K. Bhattacharya, 2005. Hydrogen production by cyanobacteria. Microbial Cell Factories, 4: 36 https://doi.org/10.1186/1475-2859-4-36
  15. Evans, B.R., H.M. O'Neill, S. A. Hutchens, B.D. Bruce, E. Greenbaum, 2004. Enhanced photocatalytic hydrogen evolution by covalent attachment of plastocyanin to photosystem I. Nano letters, 4(10): 1815−1819 https://doi.org/10.1021/nl0493388
  16. Gaffron, H., J. Rubin, 1942. Fermentative and photochemical production of hydrogen in algae. J Gen. Physiol., 26: 219−240 https://doi.org/10.1085/jgp.26.2.219
  17. Gallon, J.R., 1981. The oxygen sensitivity of nitrogenase: a problem for biochemists and micro-organisms. Trends in Biochemical Sciences, 6: 19−23 https://doi.org/10.1016/0968-0004(81)90008-6
  18. Gao, K., K.R. Mckinley, 1994. Use of macroalgae for marine biomass production and $CO_2$ remediation: a review. J. Appl. Phycol., 6: 45−60 https://doi.org/10.1007/BF02185904
  19. Ghirardi, M.L., L. Zhang, J.W. Lee, T. Flynn, M. Seibert, E. Greenbaum, A. Melis, 2000. Microalgae: a green source of renewable $H_2$. Trends in Biotechenology, 18(12): 506−511 https://doi.org/10.1016/S0167-7799(00)01511-0
  20. Golden, S.S., M. Ishiura, C.H. Johnson, T. Kondo, 1997. Cyanobacterial circadian rhythms. Annu. Rev. Plant Physiol. Plant Mol. Biol., 48: 327−354 https://doi.org/10.1146/annurev.arplant.48.1.327
  21. Greenbaum, E., S.L. Blankinship, J.W. Lee, R.M. Ford, 2001. Solar photobiochemistry: simultaneous photoproduction of hydrogen and oxygen in a confined bioreactor. J. Phys. Chem. B, 105: 3605−3609 https://doi.org/10.1021/jp0042821
  22. Hallenberck, P.C., J.R. Benemann, 2002. Biological hydrogen production; fundamentals and limiting process. International Journal of Hydrogen Energy, 27: 1185−1193 https://doi.org/10.1016/S0360-3199(02)00131-3
  23. Hansel, L.A., P. Lindblad, 1998. Towards optimization of cyanobacteria as biotechnologically relevant producers of molecular hydrogen, a clean and renewable energy soruce. Appl Microbial Biotechnol., 50: 153−160 https://doi.org/10.1007/s002530051270
  24. Herzog, A., M. Tatsutani, 2005. A hydrogen future? An economic and environmental assessment of hydrogen production pathways. Natural Resources Defense Council, 23 pp
  25. Homann, P.H., 2003. Hydrogen metabolism of green algae: discovery and early research - a tribute to Hans Gaffron and his coworkers. Photosynthesis Research, 76: 93−103 https://doi.org/10.1023/A:10249352232
  26. Iwazaki, H., T. Kondo, 2000. The current state and problems of cir-cadian clock studies in cyanobacteria. Plant and Cell Physiology, 41(9): 1013−1020 https://doi.org/10.1093/pcp/pcd024
  27. Johnson, C.H., S.S. Golden, 1999. Circadian programs in cyanobacteria: Adaptiveness and mechanism. Amu. Rev. Microbiol., 53: 389−409 https://doi.org/10.1146/annurev.micro.53.1.389
  28. Kim, M.S., J.S. Baek, J.K. Lee, 2006. Comparison of H2 accumulation by Rhodobacter sphaeroides KD131 and its uptake hydrogenase and PHB synthase deficient mutant, International Journal of Hydrogen Energy, 31: 121−127 https://doi.org/10.1016/j.ijhydene.2004.10.023
  29. Kumazawa, S., 2003. Photoproduction of hydrogen by the marine heterocystous cyanobacterium Anabaena species TU37-1 under a nitrogen atmosphere. Mar. Biotechnology, 5: 222−226 https://doi.org/10.1007/s10126-002-0106-x
  30. Kumazawa, S., A. Mitsui, 1981. Characterization and optimization of hydrogen photoproduction by a saltwater blue-green alga, Oscillatoria sp. Miami BG7. I. Enhancement through limiting the supply of nitrogen nutrients. International Journal of Hydrogen Energy, 6: 339−348 https://doi.org/10.1016/0360-3199(81)90060-4
  31. Kumazawa, S., A. Mitsui, 1994. Efficient hydrogen photoproduction by synchronously grown cells of a marine cyanobacterium, Synechococcus sp. Miami BG 043511, under high cell density conditions. Biotechnology and Bioengineering, 44: 854−858 https://doi.org/10.1002/bit.260440711
  32. Leon, C., S. Kumazawa, A. Mitsui, 1986. Cyclic appearance of aerobic nitrogenasw activity during synchronous growth of unicellular cyanobacteria. Current microbiology, 13: 149−153 https://doi.org/10.1007/BF01568510
  33. Levin, D.V., L. Pitt, M. Love, 2004. Biohyerogen production : prospects and limitations to practical application. International Journal of Hydrogen Energy, 29: 173−185 https://doi.org/10.1016/S0360-3199(03)00094-6
  34. Lichtl, R.R., M.J. Bazin, D.O. Hall, 2005. The biotechnology of hydrogen production by Nostoc flagelliforme grown under chemostat conditions. Appl. Microbial. Biotechnol., 47: 701−707 https://doi.org/10.1007/s002530050998
  35. Logan., B.E., S.E. Oh, I.S. Kim, S.V. Ginkel, 2002. Biological hydrogen production measured in batch anaerobic respirometers. Environ. Sci. Technol., 36: 2530−2535 https://doi.org/10.1021/es015783i
  36. Lopez, M.S., D.M. Sherman, L.A. Sherman, 1997. Transcriptional and translational regulation of nitrogenase in light-dark- and continuous- light-grown cultures of the unicellular cyanobacterium Cyanothece sp. strain ATCC 51142. Journal of Bacteriology, 179(13): 4319−4327
  37. Luo, Y.H., S. Kumazawa, LE, Brand, 1998. Effect of exogenous substrates on hydrogen photoproduction by a marine cyanobacterium, Synechococcus sp. Miami BG043511. In: Biohydrogen, edited by Zaborsky, Plenmum, pp. 219−226
  38. Madamwar, D., N. Grag, V. Shah, 2000. Cyanobacterial hydrogen production. World Journal of Microbiology & Biotechnology, 16: 757−767 https://doi.org/10.1023/A:1008919200103
  39. Masukawa, H., M. Mochimaru, H. Sakurai, 2002. Disruption of the uptake hydrogenase gene, but not of the bidirectional hydrogenase gene, leads to enhanced photobiological hydrogen production by the nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120. Appl. Microbiol. Biotechnol., 58: 618−624 https://doi.org/10.1007/s00253-002-0934-7
  40. Mitsui, A., 1975. The utilization of solar energy for hydrogen production by cell free system of photosynthetic organisms. In: Hydrogen energy; Proceedings of the Hydrogen Economy Miami Energy Conference, Miami Beach, Fla., March 18-20, Part A. (A75-44751 22-44) New York, Plenum Press, pp. 309−316
  41. Mitsui, A., 1976. Long range concepts; applications of photosynthetic hydrogen production and nitrogen fixation research. In: Proceedings of a conference on capturing the sun through bioconversion. March 10-12, Washington, D.C., pp. 653−673
  42. Mitsui, A., 1992. Hydrogen photoproduction by marine cyanobacteria for alternating the carbon energy sources. Short communications of the 1991 International Marine Biotechnology Conference, vol II, pp. 710−723
  43. Mitsui, A., R. Murray, B. Entenmann, K. Miyazawa, E. Polk, 1981. Utilization of marine blue-green algae and macroalgae in warm water mariculture. Environmental Science Research, 23: 215−225
  44. Mitsui, A., S Kumazawa, A. Takahashi, H. Ikemoto, S. Cao, T. Arai, 1986. Strategy by which nitrogen-fixing unicellular cyanobacteria grow photoautotrophically. Nature, 323(6090): 720−722 https://doi.org/10.1038/323720a0
  45. Mitsui, A., S. Kumazawa, 1988. Nitrogen fixation by synchronously grown unicellular aerobic nitrogen-fixing cyanobacteria. In: Methods in enzymology, edited by Packer, L. and A.N. Glazer, Academic Press, 167: 484−490
  46. Miyake, J., M. Miyake, Y. Asada, 1999. Biotechnological hydrogen production: research for efficient light energy conversion. Jounal of Biotechnology, 70: 89−101 https://doi.org/10.1016/S0168-1656(99)00063-2
  47. Park, J.W., J.M. Kim, N. Ha, W. Yih. 2007. Photobiological hydrogen production by Korean strains of unicellular nitrogen-fixing marine cyanobacteria. In: Proceedings of the 2007 Asian Biohydrogen Symposium. November 9-11, Daejeon, Korea. p.50
  48. Park, J.W., J.M. Kim, N. Ha, W. Yih. 2009. Synchronization of a cultured marine unicellular $N_2$-fixing cyanobacterium, Cyanothece sp. KNU CB-MAL031. The Yellow Sea (in press)
  49. Park, W., S.H. Hyun, S. Oh, B.E. Logan, I. Kim, 2005. Removal of headspace $CO_2$ increases biological hydrogen production. Environ. Sci. Technol., 39: 4416−4420 https://doi.org/10.1021/es048569d
  50. Sakurai, H., H. Masukawa, X. Zhang, H. Ikeda, K. Inoue, 2008. Improvement of nitrogenase-based photobiological hydrogen production by cyanobacteria by gene engineering - hydrogenases and homocitrate synthase. In: Photosynthesis. Energy from the sun: 14th International Congress on Photosynthesis, editied by Allen, J.F., E. Gantt, J.H. Golbeck, and B. Osmond, Springer, pp. 1277-1280
  51. Schuts, K., T. Happe, O. Troshina, P. Lindblad, E. Leitao, P. Oliveira, P. Tamagnini, 2004. Cyanobacterial H2 production-a comparative analysis. Planta, 218: 350−359 https://doi.org/10.1007/s00425-003-1113-5
  52. Shah, V., N. Garg, D. Madamwar, 2001. Ulltrastructure of ther water cyanobacterium Anabaena variabilis SPU 003 and its application for oxygen-free hydrogen production. FEMS Microbiology letters, 194: 71−75 https://doi.org/10.1111/j.1574-6968.2001.tb09448.x
  53. Sode, K., K. Horikoshi, H. Takeyama, N. Nakamura, T. Matsunaga, 1991. On-line monitoring of marine cyanobacterial cultivation based on phycocyanin fluorescence. Journal of Biotechnology, 21: 209−218 https://doi.org/10.1016/0168-1656(91)90042-T
  54. Szacilowski, K., W. Macyk, A. Drzewiecka-Matuszek, M. Brindell, G. Stochel, 2005. Bioninorganic photochemistry: frontiers and mechanisms. Chem. Rev., 105: 2647−2694 https://doi.org/10.1021/cr030707e
  55. Tamagnini, P., J. Coasta, L. Almeda, M. Oliveira, R. Salema, P. Lindblad, 2000. Diversity of cyanobacterial hydrogenases, a molecular approach. Current microbiology, 40: 356−361 https://doi.org/10.1007/s002840010070
  56. Turner, S., T.C. Huang, S. Chaw, 2001. Molecular phylogeny of nitrogen-fixing unicellular cyanobacteria. Bot. Bull. Acad. Sin., 42: 181−186
  57. Venjak-Novakovic, G., Y. Kim, X. Wu, I. Berzin, J.C. Merchuk, 2005. Air-lift bioreators for algae growth on flue gas: mathematical modeling and pilot-plant studies, Ind. Eng. Chem. Res., 44: 6154−6153 https://doi.org/10.1021/ie049099z
  58. Winter, C.J., 2004. The hydrogen energy economy: an address to the world economic forum 2004. International Journal of Hydrogen Energy, 29: 1095−1097
  59. Wunschiers, R., P. Lindblad, 2002. Hydrogen in education - a biological approach. International Journal of Hydrogen Energy, 27: 1131−1140 https://doi.org/10.1016/S0360-3199(02)00098-8
  60. Wyatt, J.T., J.K.G. Silvey, 1969. Nitrogen fixation by Gloeocapsa. Science, 165: 908−909 https://doi.org/10.1126/science.165.3896.908
  61. Yih W, H. Takeyama, A. Mitsui, 1996. Hydrogen photoproduction by the synchronously growth marine unicellular cyanobacterium Synechoccoccus sp. Miami BG 043511 under extremely high oxygen concentration. J. Korean Soc. Oceanogr., 31(1): 18−22
  62. Yoon, J.H., J.H. Shin, M.S. Kim, S.J. Sim, T.H. Park, 2006. Evaluation of conversion efficiency of light to hydrogen energy by Anabaena variabilis. International Journal of Hydrogen Energy, 31: 721−727 https://doi.org/10.1016/j.ijhydene.2005.06.023