DOI QR코드

DOI QR Code

Non-linear Time History Analysis of Piloti-Type High-rise RC Buildings

필로티형 고층 RC건물의 비선형시간이력해석

  • 고동우 (제주대학교 공과대학 건축학부) ;
  • 이한선 (고려대학교 공과대학 건축사회환경시스템공학과)
  • Published : 2009.02.28

Abstract

Two types of piloti-type high-rise RC building structures having irregularity in the lower two stories were selected as prototypes, and nonlinear time history analysis was performed using OpenSees to verify the analysis technique and to investigate the seismic capacity of those buildings. One of the buildings studied had a symmetrical moment-resisting frame (BF), while the other had an infilled shear wall in only one of the exterior frames (ESW). A fiber model, consisting of concrete and reinforcing bar represented from the stress-strain relationship, was adapted and used to simulate the nonlinearity of members, and MVLEM (Multi Vertical Linear Element Model) was used to simulate the behavior of the wall. The analytical results simulate the behavior of piloti-type high-rise RC building structures well, including the stiffness and yield force of piloti stories, the rocking behavior of the upper structure and the variation of the axial stiffness of the column due to variation in loading condition. However, MVLEM has a limitation in simulating the abrupt increasing lateral stiffness of a wall, due to the torsional mode behavior of the building. The design force obtained from a nonlinear time history analysis was shown to be about $20{\sim}30%$ smaller than that obtained in the experiment. For this reason, further research is required to match the analytical results with real structures, in order to use nonlinear time history analysis in designing a piloti-type high-rise RC building.

강한 지진에 대한 필로티형 고층 철근콘크리트 건물의 거동을 묘사하기 위한 해석기법의 개발과 성능평가를 위해, 상부벽식 하부 골조형식인 필로티형 건물에 대한 1/12축소 진동대 실험결과와 OpenSees를 이용하여 실험모델에 대한 비선형 시간이력해석을 수행한 결과를 비교하였다. 하부골조 형식은 모두 골조로 이루어진 형태(BF)와 전단벽이 한쪽 외부골조에 치우쳐 비틀림이 발생하는 형태(ESW)의 실험체에 대해 해석연구를 수행하였다. 철근과 콘크리트의 응력-변형률관계를 정의한 후 이를 단면에 이식시킨 섬유모델을 통해 비선형거동을 나타내도록 하였으며, 벽체는 MVLEM모델을 이용하였다. 해석결과 본 논문에서 제시한 비선형 모델은 필로티층의 거동(예를 들면 필로티층의 항복강도와 강성 상부구조물의 흔들림, 거동, 그리고 축력의 변화에 따른 축강성과 전단강성의 변화)을 비교적 정확하게 묘사하였다. 그러나 MVLEM으로 벽체의 비선형거동을 구성한 결과 거시거동은 실제 모델을 잘 따랐으나, 비틀림이 주된 진동주기일 때 발생하는 벽체 횡강성의 급격한 증가와 Warping현상으로 인해 코너기둥에 발생하는 과도한 인장력은 제대로 반영하지 못하였다. 비선형 해석으로 설계부재력을 구할 경우 실제보다 약 $20{\sim}30%$ 작게 나타났는데, 이는 실험과 해석방법의 차이때문에 발생한 것으로 보이며, 비선형 거동이 과도하게 발생한 수준의 지진에 대해서는 필로티형 건물의 거동특성을 충실히 나타내었다.

Keywords

References

  1. Lee, H. S. and Ko, D. W., “Shaking table tests of a high rise RC bearing-wall structure with bottom piloti stories,” Journal of Asian Architecture and Building Engineering, Vol. 1, No. 1, 2002, pp. 47-54. https://doi.org/10.3130/jaabe.1.47
  2. Lee, H. S. and Ko, D. W., “Seismic characteristics of high-rise RC wall Buildings having different irregularities in lower stories,” Engineering Structures, Vol. 29, No. 11, 2007, pp. 3149-3167. https://doi.org/10.1016/j.engstruct.2007.02.014
  3. Ko, D. W. and Lee, H. S., “Shaking table tests on a high-rise RC building model having torsional eccentricity in soft lower storeys,” Earthquake Engng Struct. Dynamics, Vol. 35, 2006, pp. 1425-1451. https://doi.org/10.1002/eqe.590
  4. 고동우, 이한선, “1:12 축소 비정형 고층 RC건물의 비선형 거동에 대한 실험과 해석의 상관성,” 한국지진공학회 논문집, 제11권 2호, 2007, pp. 1-10. https://doi.org/10.5000/EESK.2007.11.2.001
  5. Los Angeles Tall Buildings Structural Design Council, An alternative procedure for seismic analysis and design of tall buildings located in the los angeles region, Los Angeles Tall Buildings Structural Design Council, 2005
  6. Michael, W., Andrew, W., and Ron, K., Recommendations for the Seismic Design of High-rise Buildings, Council on Tall Buildings and Urban Habit, 2008
  7. OpenSees, Open System for earthquake engineering simulation(opensees.berkeley.edu), Pacific Earthquake Engineering Research Center, University of California, 2004
  8. 김상연, 이한선, 고동우, “상부전단벽과 하부골조로 구성된 복합구조의 설계실무현황 분석,” 한국콘크리트학회 봄 학술발표회 논문집, 제 11권, 제 1호, 1999, pp. 223-228.
  9. 마이다스아이티, MIDAS GEN Structural Analysis Program, 마이다스아이티, 2003
  10. 대한건축학회, 건축물설계기준, 대한건축학회, 2005.
  11. Paulay, T. and Priestley, M. J. N. Seismic design of reinforced concrete and masonry buildings, John Willey & Sons, Inc. 1992
  12. Orakcal, K., Wallace, J. W. and Conte, J. P., “Nonlinear modeling and analysis of slender reinforced concrete walls,” ACI Structural Journal, Vol. 101, No. 5, 2004, pp.688-698.
  13. Ilita, R. and Bertero, V. V., Effects of amount and arrangement of wall-pannel reinforcement on hysteretic behavior of reinforced concrete walls, Earthquake Engineering Research Center Report No. UCB/EERC-80-04, 1980.
  14. Computer & Structures, Inc., SAP 2000 Integrated finite element analysis and design of structures, Computer and Structures, Inc., Berkeley, CA., 2000
  15. Moehle, J. P., “The tall buildings initiative for alternative seismic design,” The Structural Design of Tall and Special Buildings, Vol. 16 No. 5, 2007, pp. 559-567. https://doi.org/10.1002/tal.435
  16. International Code Council, International Building Code, International Code Council, 2000

Cited by

  1. Seismic Performance Evaluation of Building with Piloti using Steel stilt damper vol.30, pp.5, 2018, https://doi.org/10.7781/kjoss.2018.30.5.265
  2. Investigation of Structural Damage in Bearing Wall Buildings with Pilotis by 2017 Pohang Earthquake vol.23, pp.1, 2019, https://doi.org/10.5000/EESK.2019.23.1.009
  3. Considerations for Seismic Design of Low-Rise Residential Bearing Wall Buildings with Pilotis vol.23, pp.1, 2019, https://doi.org/10.5000/EESK.2019.23.1.031