Permanence of an impulsive food web system with Holling-type II functional responses

  • Baek, Hun-Ki (Department of Mathematics, Kyungpook National University) ;
  • Park, Jun-Pyo (Department of Mathematics, Kyungpook National University) ;
  • Do, Young-Hae (Department of Mathematics, Kyungpook National University)
  • 발행 : 2009.01.31

초록

In this paper, we are studying the property for permanence of a three species food chain system with impulsive perturbations and Holling type II functional response, species which is important concept or property in ecological systems. Specially, we give the conditions for the permanence of this system. To do it, we consider the comparison method which is typical skill happened in impulsive differential inequalities. In addition, we reaffirm our results by using a numerical example.

키워드

참고문헌

  1. Baek, H. (2008). Extinction and permanence of a three-species Lotka-Volterra system with impulsive control strategies. Discrete Dynamics in Nature and Society, 2008, Article ID 752403, 18 pages doi:10.1155\2008\752403.
  2. Bainov, D. D. and Simeonov, P. S. (1993). Impulsive Differential Equations: Periodic Solutions and Applications, 66, of Pitman Monographs and Surveys in Pure and Applied Mathematics, Longman Science & Technical, Harlo, UK.
  3. Brauer, F. and Castillo-Chavez, Carlos. (2001). Mathematical models in population biology and epidemiology, Texts in applied mathematics 40, Springer-Verlag.
  4. Hassell, M. P. and Varley, G. C. (1969). New inductive population model for insect parasites and its bearing on biological control. Nature, 223, 1133-1136. https://doi.org/10.1038/2231133a0
  5. Holling, C. S. (1965). The functional response of predator to prey density and its rold in mimicy and population regulatio. Mem. Entomol. Soc. Ca., 45, 1-60.
  6. Kang, S. G., Kim, D. H. and Lee, W. D. (2007). Bayesian hypothesis testing for homogeneity of the shape parameters in the Gamma populations. Journal of Korean data & Information science society, 18, 1191-1203.
  7. Lakshmikantha V, Bainov, D. and Simeonov, P. (1989). Theory of impulsive differential equations, World Scientific Publisher, Singapore.
  8. Liu, B., Teng, Z. and Chen, L. (2006). Analysis of a predator-prey model with Holling II functional response concerning impulsive control strategy. Journal of Computational and Applied Mathematics, 193, 347-362. https://doi.org/10.1016/j.cam.2005.06.023
  9. Liu, B., Zhang, Y. J., Chen, L. S. and Sun, L. H. (2005). The dynamics of a prey-dependent consumption model concerning integrated pest management. Acta Mathematica Sinica, English Series, 21, 541-554. https://doi.org/10.1007/s10114-004-0476-2
  10. Liu, X. and Chen, L. (2003). Complex dynamics of Holling type II Lotka- Volterra predator-prey system with impulsive perturbations on the predator. Chaos, Solitons and Fractal, 16, 311-320. https://doi.org/10.1016/S0960-0779(02)00408-3
  11. Rashid Mamunur, (2008). Generalization of the hybrid logistic model for more than one rare risk factor. Journal of the Korean data & Information science society, 19, 361-373.
  12. Ruan, S. and Xiao, D. (2001). Global analysis in a predator-prey system with non-monotonic functional response. SIAM Journal on Applied Mathematics, 61, 1445-1472. https://doi.org/10.1137/S0036139999361896
  13. Skalski, G. T. and Gilliam, J. F. (2001). Functional responses with predator interference: viable alternatives to the Holling type II mode. Ecology, 82, 3083-3092. https://doi.org/10.1890/0012-9658(2001)082[3083:FRWPIV]2.0.CO;2
  14. Wang W. B., Shen, J. H. and Nieto, J. J. (2007). Permanence periodic solution of predator prey system with Holling type functional response and impulses. Discrete Dynamics in Nature and Society, 2007, Article ID 81756, 15 pages.
  15. Wang, W., Wang, H. and Li, Z. (2007). The dynamic complexity of a three- species Beddington-type food chain with impulsive control strategy. Chaos, Solitons and Fractals, 32, 1772-1785. https://doi.org/10.1016/j.chaos.2005.12.025
  16. Wang, W., Wang, H. and Li, Z. (2008). Chaotic behavior of a three-species Beddington-type system with impulsive perturbations. Chaos, Solitons and Fractals, 37, 438-443. https://doi.org/10.1016/j.chaos.2006.09.013
  17. Zhang, S., Wang, F. and Chen, L. (2005). A food chain model with impulsive perturbations and Holling IV functional response. Chaos, Solitions and Fractals, 26, 855-866. https://doi.org/10.1016/j.chaos.2005.01.053
  18. Zhang, S., Tan, D. and Chen, L. (2006). Dynamic complexities of a food chain model with impulsive perturbations and Beddington-DeAngelis functional response. Chaos, Solitons and Fractals, 27, 768-777. https://doi.org/10.1016/j.chaos.2005.04.047
  19. Zhang, S., Tan, D. and Chen, L. (2006). Chaotic behavior of a periodically forced predator-prey system with Beddington-DeAngelis functional response and impulsive perturbations. Advances in complex Systems, 9, 209-222. https://doi.org/10.1142/S0219525906000811
  20. Zhang, S. and Chen, L. (2005). Chaos in three species food chain system with impulsive perturbations. Chaos, Solitions and Fractals, 24, 73-83. https://doi.org/10.1016/S0960-0779(04)00457-6
  21. Zhang, S. and Chen, L. (2005). A Holling II functional response food chain model with impulsive perturbations. Chaos, Solitons and Fractals, 24, 1269-1278. https://doi.org/10.1016/j.chaos.2004.09.051