Science Teachers' Brain activation and functional connectivity during scientific observation on the biological phenomena

생명현상에 대한 과학적 관찰에서 나타나는 과학 교사들의 두뇌 활성 및 기능적 연결

  • Published : 2009.10.31

Abstract

The purpose of this study was to investigate secondary science teachers' brain activation and functional connectivity during scientific observation on the biological phenomena. Twenty six right-handed healthy science teachers volunteered to be in the present study. To investigate science teachers' brain activities during the tasks, 3.0T fMRI system with block design was used to measure BOLD signals in their brains. The SPM2 software package was applied to analyze the acquired initial image data from the fMRI system. The results have shown that the left inferior frontal gyrus, the bilateral superior parietal lobule, the left inferior parietal lobule, the left precuneus, the left superior occipital gyrus, the right middle occipital gyrus, the right precuneus, the left inferior occipital gyrus and bilateral fusiform gyrus were significantly activated during participants' scientific observation. The network model consisted of eleven nodes (ROIs) and its ten connections. These results suggested the notion that scientific observation needs a connective cooperation among several brain regions associated with observing over just a sensory receiving process.

이 연구의 목적은 중, 고등학교 과학교사들의 생명 현상에 대한 과학적 관찰에서 나타나는 두뇌의 활성 양상 및 기능적 연결 네트워크를 규명하는 것이다. 이를 위해 중, 고등학교에서 근무하는 26명의 건강한 오른손잡이 과학교사들이 이 연구에 참여하였다. 과학 교사들의 과제수행 과정에서의 두뇌활성을 측정하기 위하여 3.0T(테슬라)의 fMRI 시스템과 블록디자인의 관찰과제가 사용되었다. 신호의 수집과 분석에는 SPM2 프로그램이 활용되었다. 연구결과에 따르면, 관찰과정에서 과학교사들은 좌측 상전두이랑, 중전두이랑, 중심전두이랑, 하전두이랑, 양측 상두정소엽, 좌측 하두정소엽, 좌측 쐐기전소엽, 우측 중측두이랑, 양측 방추이랑, 좌측 상후두이랑, 양측 중후두이랑, 좌측 하후두이랑, 우측 혀이랑, 양측 방추이랑, 양측 쐐기소엽, 우측 해마옆이랑, 좌측 조가비핵, 그리고 양측 소뇌비탈의 활성을 보였다. 또한 이들 영역 중 관찰과정에서 기능적으로 연결성을 보이는 네트워크를 형성하는 것으로 선정된 11개의 영역에서 10개의 유의미한 기능적 연결을 형성하였다. 이러한 결과는 생명현상에 대한 과학적 관찰이 단순한 감각수용만을 넘어선 기능적 연결이 필요함을 시사한다.

Keywords

References

  1. 권용주, 이준기, 신동훈, 이효녕 (2006). 생명현상의 관찰과 명화 감상에서 나타나는 생물교육학자들의 두뇌활성: fMRI 연구. 중등교육연구, 54(3), 475-502
  2. 권용주, 이준기, 신동훈, 정진수 (2007). 기공과 새우 과제에서 초∙중등 교사들이 생성한 관찰의 분석 및 관찰력 지수의 개발. 중등교육연구, 55(3), 83-112
  3. 권용주, 정진수, 강민정, 박윤복 (2005). 생명현상에 대한 초∙중등 과학교사의 관찰에서 나타난 과학적 관찰의 유형. 한국과학교육학회지, 25(3), 431-439
  4. 박종원, 김익균 (1999). 과학적 관찰의 의미와 탐구과정에서 학생들의 관찰행동 분석. 한국과학교육학회지, 19(3), 487-500
  5. 신동훈, 권용주 (2007). 초등과학 교육에서 두뇌 연구 방법의 고찰 - fMRI 활용법을 중심으로 -. 초등과학교육, 26(1), 49-62
  6. 유승식 (2001). 기능성 자기 공명 영상 실험(실전응용을 중심으로 한). 서울: 의학문화사
  7. Amaro, E. Jr., & Barker, G. J. (2006). Study design in fMRI: Basic principles. Brain and Cognition, 60, 220-232 https://doi.org/10.1016/j.bandc.2005.11.009
  8. Ansari, D., & Coch, D. (2006). Bridge over troubled waters: education and cognitive neuroscience. Trends in cognitive sciences, 10(4), 146-151 https://doi.org/10.1016/j.tics.2006.02.007
  9. Bar, M., & Aminoff, E. (2003). Cortical analysis of visual context. Neuron, 38, 347-358 https://doi.org/10.1016/S0896-6273(03)00167-3
  10. Castriota-Scanderbeg, A., Hagberg, G. E., Cerasa, A., Committeri, G., Galati, G., Patria, F., Pitzalis, S., Caltagirone, C., & Frackowiak, R. (2005). The appreciation of wine by sommelier: a functional magnetic resonance study of sensory integration. NeuroImage, 25, 570-578 https://doi.org/10.1016/j.neuroimage.2004.11.045
  11. Caveza, R., & Nyberg, L. (2000). Imaging cognition II: An empirical review of 275 PET and fMRI studies. Journal of Cognitive Neuroscience, 12(1), 1-47 https://doi.org/10.1162/08989290051137585
  12. Delgado, M. R., Miller, M. M., Inati, S., & Phelps, E. A. (2005). An fMRI study of rewardrelated probability learning. NeuroImage, 24, 862-873 https://doi.org/10.1016/j.neuroimage.2004.10.002
  13. Friston, K. J., Frith, C. D., & Frackowiak, R. S. J. (1993). Time-dependent changes in effective connectivity measured with PET. Human Brain Mapping, 1, 69-79 https://doi.org/10.1002/hbm.460010108
  14. Ganis, G., Thompson, W. L., & Kosslyn, S. M. (2004). Brain areas underlying visual mental imagery and visual perception: an fMRI study. Cognitive Brain Research, 20, 226-241 https://doi.org/10.1016/j.cogbrainres.2004.02.012
  15. Green, A. E., Fugelsang, J. A., Kraemer, D. J. M., & Shamosh, N. A. (2006). Frontopolar cortex mediates abstract integration in analogy. Brain Research, 1096. 125-137 https://doi.org/10.1016/j.brainres.2006.04.024
  16. Hanson, N. R. (1961). Patterns of discovery : An inquiry into the conceptual foundations of science. Cambridge: Cambridge University Press
  17. Horwitz, B. (2003). The elusive concept of brain connectivity. NeuroImage 19, 466 470 https://doi.org/10.1016/S1053-8119(03)00112-5
  18. Huettel, S. A., Song, A. W., & McCarthy, G. (2004). Functional magnetic resonance imaging. Sunderland. MA: Sinauer associate, Inc
  19. James, T. W., Servos, P., Kilgour, A. R., Hur, E., & Lederman, S. (2006). The influence of familiarity on brain activation during haptic exploration of 3-D facemasks. Neuroscience Letters, 397, 269-273 https://doi.org/10.1016/j.neulet.2005.12.052
  20. Kitchener, R. F. (1999). The conduct of inquiry : An Introduction to Logic and Scientific Method. Lanham, MD: University press of america
  21. Koshino, H., Carpenter, P. A., Minshew, N. J., Cherkassky, V. L., Keller, T. A., & Just, M. A. (2005). Functional connectivity in an fMRI working memory task in high-functioning autism. NeuroImage, 24, 810-821 https://doi.org/10.1016/j.neuroimage.2004.09.028
  22. Lee, J. K. (2009). Dissociation of the brain activation network associated with hypothesis-generating and hypothesisunderstanding in biology learning: Evidence from an fMRI study. Unpublished Doctoral Dissertation. Cheongwon, Chungbuk: Korea National University of Education
  23. Lee, J., Kwon, Y., & Jeong, J. (2008). Neural substrates during finding target objects and observing natural phenomena : An fMRI study. In Advances in Cognitive Neurodynamics, R. Wng, F. Gu & E. Shen (Eds.). Dordrecht, The Netherlands: Springer
  24. Lee, L., Harrison, L. M., & Mechelli, A. (2003). A report of functional connectivity workshop, Dusseldorf 2002. NeuroImage, 19, 457-465 https://doi.org/10.1016/S1053-8119(03)00062-4
  25. Marrelec, R., Bellec, P., Krainik, A., Duffau, H., Pelegrini-Issac, M., Lehericy, H., Benali, H., & Doyon, J. (2008). Regions, systems, and the brain: Hierarchical measures of functional integration in fMRI. Medical Image Analysis, 12, 484-496 https://doi.org/10.1016/j.media.2008.02.002
  26. McClure, S. M., Berns, G. S., & Montague, P. R. (2003). Temporal prediction error in a passive learning task activate human striatum. Neuron, 38, 339-346 https://doi.org/10.1016/S0896-6273(03)00154-5
  27. Milner, G. A. (1963). Effects of different brain lesions on card sorting. Archives of Neurology, 9, 90-100 https://doi.org/10.1001/archneur.1963.00460070100010
  28. Passingham, R. E., Stephan, K. E., & Ktter, R. (2002). The anatomical basis of functional localization in the cortex. Nature Reviews Neuroscience, 3, 606-616 https://doi.org/10.1038/nrn893
  29. Poirier, C. C., De Volder, A. G., Tranduy, D., & Scheiber, C. (2006). Neural changes in the ventral and dorsal visual streams during pattern recognition learning. Neurobiology of Learning and Memory, 85, 36-43 https://doi.org/10.1016/j.nlm.2005.08.006
  30. Reed, C. L., Shoham, S., & Halgren, E. (2004). Neural substrates of tactile object recognition: An fMEI study. Human Brain Mapping, 21, 236-246 https://doi.org/10.1002/hbm.10162
  31. Rosenzweig, M. R., Breedlove, S. M. & Watson, N. V. (2005). Biological psychology: an introduction to behavioral and cognitive neuroscience, 4th Ed. Sinauer associate, Inc
  32. Schaefer, A., Collette, F., Philippot, P., Van der Linden, M.m Laureys, S., Delfiore, G., Degueldre, C., Maquet, P., Luxen, A., & Salmon, E. (2003). Neural correlates of "hot" and "cold" emotional processing a multilevel approach to the functional anatomy of emotion. NeuroImage, 18, 983-949 https://doi.org/10.1016/S1053-8119(03)00009-0
  33. Schultz, J., Chuang, L., & Vuong, Q. C. (2007). A dynamic object-processing network: Metric shape discrimination of dynamic objects by activation of occipitotemporal, parietal, and frontal cortices. Cerebral Cortex, 18(6), 1302-1313 https://doi.org/10.1093/cercor/bhm162
  34. Seung, Y., Kyong, J. S., Woo, S, H., Lee, B. T., & Lee, K. M. (2005). Brain activation during music listening in individuals with or without prior music training. Neuroscience Research, 52, 323-329 https://doi.org/10.1016/j.neures.2005.04.011
  35. Sommer, T., Rose, M., Weiller, C., & Buchel, C. (2005). Contribution of occipital, parietal and parahippocampal cortex to encoding of object-location associations. Neuropsychologia, 43, 732-743 https://doi.org/10.1016/j.neuropsychologia.2004.08.002
  36. Talairach, J., & Tournoux, P. (1988). Co-Planner stereotaxic atlas of the human brain. New York: Thieme Medical publisher, Inc
  37. Tononi, G., Edelman, G. M., & Sporns, O. (1998). Complexity and coherency: integrating information in the brain. Trends in Cognitive Sciences, 2(12), 474-484 https://doi.org/10.1016/S1364-6613(98)01259-5
  38. Yue, X., Vessel, E. A., & Biederman, I. (2007). The neural basis of scene preferences. NeuroReport, 18(6), 525-529 https://doi.org/10.1097/WNR.0b013e328091c1f9