Suppressive Effects of Various Antioxidants on Melamine-induced Oxidative DNA Damage in Human Lymphocytes

  • Park, Seul-Ki (Department of Medical Biotechnology, SoonChunHyang University) ;
  • Lee, Mi-Young (Department of Medical Biotechnology, SoonChunHyang University)
  • Published : 2009.09.30

Abstract

Melamine, which is used to produce melamine resin for various industrial applications, has a high nitrogen content by mass. For this reason, it has been illegally added to foods to increase their apparent protein content. In the present investigation, melamine-induced oxidative damage of human lymphocyte DNA was evaluated by Comet assay. The in vitro oxidative DNA damage caused by melamine increased in a dose-dependent manner. This DNA damage was significantly inhibited by treatment with ascorbate. Moreover, the traditional Korean medicinal herb, named Acanthopanax, red ginseng and green tea markedly reduced the DNA damage. Various edible plant extracts also inhibited melamine-induced oxidative DNA damage in vitro. Melamine enhanced intracellular ROS generation, and this effect was suppressed by treatment with various antioxidants.

Keywords

References

  1. Girods, P. et al. Thermal removal of nitrogen species from wood waste containing urea formaldehyde and melamine formaldehyde resins. J Hazard Mater 159: 210-221 (2008) https://doi.org/10.1016/j.jhazmat.2008.02.003
  2. Hauck, R. D. & Stephenson, H. F. Fertilizer nitrogen sources, nitrification of triazine nitrogen. J Agric Food Chem 12:147-151 (1964) https://doi.org/10.1021/jf60132a014
  3. Newton, G. L. & Utley, P. R. Melamine as a dietary nitrogen source for ruminants. J Anim Sci 47:1338-1344 (1978) https://doi.org/10.2527/jas1978.4761338x
  4. Andersen, W. C. et al. Determination and confirmation of melamine residues in catfish, trout, tilapia, salmon, and shrimp by liquid chromatography with tandem mass spectrometry. J Agric Food Chem 56:4340-4347 (2008) https://doi.org/10.1021/jf800295z
  5. Dobson, R. L. et al. Identification and characterization of toxicity of contaminants in pet food leading to an outbreak of renal toxicity in cats and dogs. Toxicol Sci 106:251-262 (2008) https://doi.org/10.1093/toxsci/kfn160
  6. Heck, H. D. & Tyl, R. W. The induction of bladder stones by terephthalic acid, dimethyl terephthalate, and melamine (2,4,6-triamino-s-triazine) and its relevance to risk assessment. Regul Toxicol Pharmacol 5:294-313 (1985) https://doi.org/10.1016/0273-2300(85)90044-3
  7. OECD, OECD SIDS Analysis UNEP Publications: Melamine (2002)
  8. Garaj-Vrhovac, V., Gajski, G., Trosi$\acute{c}$, I. & Pavici$\acute{c}$, I. Evaluation of basal DNA damage and oxidative stress in Wistar rat leukocytes after exposure to microwave radiation. Toxicology 259:107-112 (2009) https://doi.org/10.1016/j.tox.2009.02.008
  9. Lee, E. M. et al. Genetic toxicity test of o-nitrotoluene by ames, micronucleus, comet assays and microarray analysis. Mol Cell Toxicol 3:107-112 (2007)
  10. Moller, P., Knudsen, L. E., Loft, S. & Wallin, H. The comet assay as a rapid test in biomonitoring occupational exposure to DNA-damaging agents and effect of confounding factors. Cancer Epidemiol Biomarkers Prev 9:1005-1015 (2000)
  11. Cotelle, S. & F$\acute{e}$rard, J. F. Comet assay in genetic ecotoxicology: a review. Environ Mol Mutagen 34:246-255 (1999) https://doi.org/10.1002/(SICI)1098-2280(1999)34:4<246::AID-EM4>3.0.CO;2-V
  12. Son, B. S. et al. Toxicoproteomic analysis of differentially expressed proteins in rat liver by DEHP. Mol Cell Toxicol 3:299-305 (2007)
  13. Lee, M. Y. et al. Electrolyzed-reduced water protects against oxidative damage to DNA, RNA, and Protein. Appl Biochem Biotechnol 135:133-144 (2006) https://doi.org/10.1385/ABAB:135:2:133
  14. Diplock, A. T. Antioxidant nutrients and disease prevention: an overview. Am J Clin Nutr 53:189S-193S (1991)
  15. Cemeli, E. et al. Antigenotoxic properties of selenium compounds on potassium dichromate and hydrogen peroxide. Teratog Carcinog Mutagen Suppl 2:53-67 (2003) https://doi.org/10.1002/tcm.10080
  16. Shirahata, S. et al. Electrolyzed-reduced water scavenges active oxygen species and protects DNA from oxidative damage. Biochem Biophys Res Commun 234:269-274 (1997) https://doi.org/10.1006/bbrc.1997.6622
  17. Melnick, R. L. et al. Urolithiasis and bladder carcinogenicity of melamine in rodents. Toxicol Appl Pharmacol 72:292-303 (1984) https://doi.org/10.1016/0041-008X(84)90314-4
  18. Grune, T. & Davies, K. J. Breakdown of oxidized proteins as a part of secondary antioxidant defenses in mammalian cells. Biofactors 6:165-172 (1997) https://doi.org/10.1002/biof.5520060210
  19. Totter, J. R. Spontaneous cancer and its possible relationship to oxygen metabolism. Proc Natl Acad Sci USA 77:1763-1767 (1980) https://doi.org/10.1073/pnas.77.4.1763
  20. Ames, B. N., Shigenaga, M. K. & Hagen, T. M. Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci USA 90:7915-7922 (1993) https://doi.org/10.1073/pnas.90.17.7915
  21. Elsayed, N. M. & Bendich, A. Dietary antioxidants: potential effects on oxidative products in cigarette smoke. Nutr Res 21:551-567 (2001) https://doi.org/10.1016/S0271-5317(00)00301-8
  22. Stoner, G. D. & Mukhtar, H. Polyphenol as cancer chemopreventive agents. J Cell Biochem Suppl 22:169-180 (1995) https://doi.org/10.1002/jcb.240590822
  23. Rice-Evans, C. A. et al. The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radic Res 22:375-383 (1995) https://doi.org/10.3109/10715769509145649
  24. Jorgensen, L. V. et al. Regeneration of phenolic antioxidants from phenoxyl radicals: an ESR and electrochemical study of antioxidant hierarchy. Free Radic Res 30:207-220 (1999) https://doi.org/10.1080/10715769900300231
  25. Yi, J. M. et al. Acanthopanax senticosus root inhibits mast cell-dependent anaphylaxis. Clin Chim Acta 312:163-168 (2001) https://doi.org/10.1016/S0009-8981(01)00613-1
  26. Shan, S. E., Yoshita, Y., Sugiura, T. & Yamashita, U. Suppressive effect of Chinese medicinal herb, Acanthopanax gracilistylus, extract on human lymphocytes in vitro. Clin Exp Immunol 118:41-48 (1999) https://doi.org/10.1046/j.1365-2249.1999.01031.x
  27. Lee, J. H. et al. Effects of ginsenosides, active ingredients of Panax ginseng, on development, growth, and life span of Caenorhabditis elegans. Biol Pharm Bull 30:2126-2134 (2007) https://doi.org/10.1248/bpb.30.2126
  28. Ko, S. R. et al. Marked production of ginsenosides Rd, F2, Rg3, and compound K by enzymatic method. Chem Pharm Bull (Tokyo) 55:1522-1527 (2007) https://doi.org/10.1248/cpb.55.1522
  29. Li, X. et al. Pharmacokinetic and absolute bioavailability study of total panax notoginsenoside, a typical multiple constituent traditional Chinese medicine (TCM) in rats. Biol Pharm Bull 30:847-851 (2007) https://doi.org/10.1248/bpb.30.847
  30. Iqbal, M. P., Kazim, S. F. & Mehboobali, N. Ascorbic acid contents of Pakistani fruits and vegetables. Pak J Pham Sci 19:282-285 (2006)
  31. Frei, B., England, L. & Ames, B. N. Ascorbate is an outstanding antioxidant in human blood plasma. Proc Natl Acad Sci USA 86:6377-6381 (1989) https://doi.org/10.1073/pnas.86.16.6377
  32. Kurilich, A. C. et al. Antioxidant capacity of different broccoli (Brassica oleracea) genotypes using the oxygen radical absorbance capacity (ORAC) assay. J Agric Food Chem 50:5053-5057 (2002) https://doi.org/10.1021/jf025535l
  33. Cho, M. L. et al. Grape seed proanthocyanidin extract (GSPE) attenuates collagen-induced arthritis. Immunol Lett 124:102-110 (2009) https://doi.org/10.1016/j.imlet.2009.05.001
  34. Oh, M. M., Carey, E. E. & Rajashekar, C. B. Environmental stresses induce health-promoting phytochemicals in lettuce. Plant Physiol Biochem 47:578-583 (2009) https://doi.org/10.1016/j.plaphy.2009.02.008
  35. Rivlin, R. S. Can garlic reduce risk of cancer? Am J Clin Nutr 89:17-18 (2009) https://doi.org/10.3945/ajcn.2008.27181
  36. Chakraborty, S., Roy, M. & Bhattacharya, R. K. Prevention and repair of DNA damage by selected phytochemicals as measured by single cell gel electrophoresis. J Environ Pathol Toxicol Oncol 23:215-226 (2004) https://doi.org/10.1615/JEnvPathToxOncol.v23.i3.50
  37. Paz-Elizur, T. et al. DNA repair of oxidative DNA damage in human carcinogenesis: potential application for cancer risk assessment and prevention. Cancer Lett 266:60-72 (2008) https://doi.org/10.1016/j.canlet.2008.02.032
  38. Singh, N. P., McCoy, M. T., Tice, R. R. & Schneider, E. L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184-191 (1988) https://doi.org/10.1016/0014-4827(88)90265-0
  39. Sul, D. G., Oh, S. N. & Lee, E. I. The expression of DNA polymerase-$\beta$ and DNA damage in jurkat cells exposed to hydrogen peroxide under hyperbaric pressure. Mol Cell Toxicol 4:66-71 (2008)
  40. Arai, T. et al. Effects of intracellular reactive oxygen species generated by 6-formylpterin on T cell functions. Biochem Pharmacol 67:1185-1193 (2004) https://doi.org/10.1016/j.bcp.2003.11.014