Physical and Rheological Properties of Thermoplasticized Crosslinked-Polyethylene Foam in Supercritical Methanol

  • Cho, Hang-Kyu (Hybrid Materials Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Hong, Soon-Man (Hybrid Materials Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Baek, Kyung-Yeol (Hybrid Materials Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Koo, Chong-Min (Hybrid Materials Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Lee, Hong-Shik (School of Chemical and Biological Engineering & Institute of Chemical Processes, Seoul National University) ;
  • Lee, Youn-Woo (School of Chemical and Biological Engineering & Institute of Chemical Processes, Seoul National University)
  • Published : 2009.12.25

Abstract

The physical and rheological properties of thermoplasticized irradiation-crosslinked polyethylene foam using supercritical methanol treatment were investigated by GPC, FTIR, DSC, WAXS, DMTA and UDS. The polyethylene foam was selectively decrosslinked into thermoplasticized polyethylene in an appropriate supercritical methanol condition without any undesirable side reactions such as oxidation and disproportionation. The thermoplasticization was promoted with increasing reaction temperature to reach completion above $380^{\circ}C$. The supercritical reaction condition affected the crystallization behavior, and mechanical and rheological properties of the decrosslinked polyethylene foam, but not its crystallographic structure or crystallinity.

Keywords

References

  1. Y. Arai, T. Sako, and Y. Takebayashi, in Supercritical fluids molecular interactions, physical properties, and new applications, Springer, Heidelberg, 2002
  2. Y. Nagase, M. Yamagata, and R. Fukuzato, R&D Kobe Steel Engine. Report, 47, 43 (1997)
  3. H. Tagaya, Y. Shibasaki, C. Kato, J. Kadokawa, and B. Hatano, J. Mater. Cycles Waste Manag., 6, 1 (2004) https://doi.org/10.1007/s10163-003-0098-2
  4. M. Genta, T. Iwaya, M. Sasaki, M. Goto, and T. Hirose, Ind. Eng. Chem. Res., 44, 3894 (2005) https://doi.org/10.1021/ie0488187
  5. M. Goto, M. Sasaki, and T. Hirose, J. Mater. Sci., 41, 1509 (2006) https://doi.org/10.1007/s10853-006-4615-2
  6. T. Goto and Y. Yamazaki, Hitachi Cable Review, 23, 24 (2004)
  7. T. Goto, T. Yamazaki, T. Sugeta, I. Okajima, and T. Sako, J. Appl. Polym. Sci., 109, 144 (2008) https://doi.org/10.1002/app.27928
  8. S. Watanabe, K. Komura, S. Nagaya, H. Morita, T. Nakamoto, S. Hirai, and F. Aida, Proceedings of the 7th International Conference on Properties and Applications of Dielectric Materials, June, Nagoya, 2003
  9. A. Kamimura, K. Yamada, T. Kuratani, Y. Taguchi, and F. Tomonaga, Chem. Lett., 35, 586 (2006) https://doi.org/10.1246/cl.2006.586
  10. H. S. Lee, J. H. Jeong, H. K. Cho, C. M. Koo, S. M. Hong, H. Kim, and Y. W. Lee, Polym. Degrad. Stabil., 93, 2084 (2008) https://doi.org/10.1016/j.polymdegradstab.2008.09.006
  11. J. Brandrup and E. H. Immergut, in Polymer Handbook, 3rd ed., Wiley, New York, 1989
  12. M. Yamaguchi and K. Suzuki, J. Polym. Sci. Part B: Polym. Phys., 39, 2159 (2001) https://doi.org/10.1002/polb.1189
  13. R. P. Charoff and R. Maxwell, Polym. Eng. Sci., 8, 159 (1969)
  14. J. E. Guillet, R. L. Combs, D. F. Slonaker, D. A. Weemes, and D. W. Groover, J. Appl. Polym. Sci., 8, 757 (1965)
  15. E. R. Harrellm and N. Nakajima, J. Appl. Polym. Sci., 29, 995 (1984) https://doi.org/10.1002/app.1984.070290327
  16. W. E. Rochefort, G. C. Smith, H. Rachapudy, V. R. Raju, and W. W. Grassely, J. Polym. Sci. Polym. Phys. Ed., 17, 1197 (1979) https://doi.org/10.1002/pol.1979.180170705
  17. R. B. Bird, R. C. Armstrong, and O. Hassager, in Dynamics of Polymeric Liquids, 2nd ed., Wiley-Interscience, New York, 1987