The Performance of Nafion-Based IPMC Actuators Containing Polypyrrole/Alumina Composite Fillers

  • Lee, Jang-Woo (Artificial Muscle Research Center, Department of Materials Chemistry and Engineering, College of Engineering, Konkuk University) ;
  • Kim, Ji-Hye (Artificial Muscle Research Center, Department of Materials Chemistry and Engineering, College of Engineering, Konkuk University) ;
  • Chun, Yoon-Soo (Artificial Muscle Research Center, Department of Materials Chemistry and Engineering, College of Engineering, Konkuk University) ;
  • Yoo, Young-Tai (Artificial Muscle Research Center, Department of Materials Chemistry and Engineering, College of Engineering, Konkuk University) ;
  • Hong, Soon-Man (Hybrid Materials Research Center, Korea Institute of Science and Technology)
  • Published : 2009.12.25

Abstract

A polypyrrole (PPy)/alumina composite filler prepared via in-situ polymerization of pyrrole on alumina particles was incorporated into $Nafion^{(R)}$ to improve the performance of ionic polymer-metal composite (IPMC) actuators. The IPMCs with the pristine PPy without alumina support did not show bending displacements superior to that of the bare Nafion-based IPMC, except at a high PPy content of 4 wt%. This result was attributed to the low redox efficiency of the PPy alone in the IPMC and may have also been related to the modulus of the IPMC. However, at the optimized filler contents, the cyclic displacement of the IPMCs bearing the PPy/alumina filler was 2.2 times larger than that of the bare Nafion-based IPMC under an applied AC potential of 3 Vat 1 Hz. Even under a low AC potential of 1.5 V at 1 Hz, the displacement of the PPy/alumina-based IPMCs was a viable level of performance for actuator applications and was 2.7 times higher than that of the conventional Nafion-based IPMC. The generated blocking force was also improved with the PPy/aiumina composite filler. The greatly enhanced performance and the low-voltage-operational characteristic of the IPMCs bearing the PPy/alumina filler were attributed to the synergic effects of the neighboring alumina moiety near the PPy moiety involving electrochemical redox reactions.

Keywords

References

  1. M. Shahinpoor, Y. B. Cohen, J. O. Simpson, and J. Smith, Smart Mater. Struct., 7, R15 (1998) https://doi.org/10.1088/0964-1726/7/6/001
  2. A. J. Duncan, D. J. Leo, and T. E. Long, Macromolecules, 41, 7765 (2008) https://doi.org/10.1021/ma800956v
  3. M. J. Han, J. H. Park, J. Y. Lee, and J. Y. Jho, Macromol. Rapid Commun., 27, 219 (2006) https://doi.org/10.1002/marc.200500694
  4. J. D. Nam, H. R. Choi, Y. S. Tak, and K. J. Kim, Sensor Actuat. A-Phys., 105, 83 (2003) https://doi.org/10.1016/S0924-4247(03)00066-9
  5. V. K. Nguyen, J. W. Lee, and Y. T. Yoo, Sensor Actuat. BChem., 120, 529 (2007) https://doi.org/10.1016/j.snb.2006.03.015
  6. D. Y. Lee, M. H. Lee, K. J. Kim, S. Heo, B. Y. Kim, and S. J. Lee, Surf. Coat. Technol., 200, 1920 (2005) https://doi.org/10.1016/j.surfcoat.2005.08.024
  7. B. J. Akle, M. D. Bennett, and D. J. Leo, Sensor Actuat. APhys., 126, 173 (2006) https://doi.org/10.1016/j.sna.2005.09.006
  8. M. Shahinpoor and K. J. Kim, Sensor Actuat. A-Phys., 96, 125 (2002) https://doi.org/10.1016/S0924-4247(01)00777-4
  9. C. K. Chung, P. K. Fung, Y. Z. Hong, M. S. Ju, C. K. Lin, and T. C. Wu, Sensor Actuat. B-Chem., 117, 367 (2006) https://doi.org/10.1016/j.snb.2005.11.021
  10. M. K. Song, Y. T. Kim, J. M. Fenton, H. R. Kunz, and H. W. Rhee, J. Power Sources, 117, 14 (2003) https://doi.org/10.1016/S0378-7753(03)00166-6
  11. G. Y. Moon and J. W. Rhim, Macromol. Res., 15, 379 (2007) https://doi.org/10.1007/BF03218802
  12. G. Y. Moon and J. W. Rhim, Macromol. Res., 16, 524 (2008) https://doi.org/10.1007/BF03218554
  13. T. Uchikoshi, S. Furumi, T. S. Suzuki, and Y. Sakka, J. Ceram. Soc. Jpn., 114, 55 (2006) https://doi.org/10.2109/jcersj.114.55
  14. X. Yang, T. Dai, and Y. Lu, Polymer, 47, 441 (2006) https://doi.org/10.1016/j.polymer.2005.11.037
  15. S. Skaarup, K. West, L. M. W. K. Gunaratne, K. P. Vidanapathirana, and M. A. Careem, Solid State Ionics, 136-137, 577 (2000) https://doi.org/10.1016/S0167-2738(00)00340-4
  16. E. T. Enikov and G. S. Seo, Sensor Actuat. A-Phys., 122, 264 (2005) https://doi.org/10.1016/j.sna.2005.02.042
  17. C. Y. Chen, J. I. G. Rodriguez, M. C. Duke, R. F. D. Costa, A. L. Dicks, and J. C. D. Costa, J. Power Sources, 166, 324 (2007) https://doi.org/10.1016/j.jpowsour.2006.12.102
  18. Z. Jiang, X. Zheng, H. Wu, and F. Pan, J. Power Sources, 185, 85 (2008) https://doi.org/10.1016/j.jpowsour.2008.06.086
  19. S. C. Byun, Y. J. Jeong, J. W. Park, S. D. Kim, H. Y. Ha, and W. J. Kim, Solid State Ionics, 177, 3233 (2006) https://doi.org/10.1016/j.ssi.2006.09.014
  20. M. Shahinpoor and K. J. Kim, Smart Mater. Struct., 10, 819 (2001) https://doi.org/10.1088/0964-1726/10/4/327