DOI QR코드

DOI QR Code

Radiography with Low Energy Protons Generated from Ultraintense Laser-plasma Interactions

  • Choi, Chang-Il (Department of Nuclear Engineering, Hanyang University) ;
  • Lee, Dong-Hoon (Department of Nuclear Engineering, Hanyang University) ;
  • Kang, Byoung-Hwi (Department of Nuclear Engineering, Hanyang University) ;
  • Kim, Yong-Kyun (Department of Nuclear Engineering, Hanyang University) ;
  • Choi, Il-Woo (Center for Femto-Atto Science and Technology, and Advanced Photonics Research Institute) ;
  • Sung, Jae-Hee (Center for Femto-Atto Science and Technology, and Advanced Photonics Research Institute) ;
  • Kim, Chul-Min (Center for Femto-Atto Science and Technology, and Advanced Photonics Research Institute) ;
  • Kim, I-Jong (Center for Femto-Atto Science and Technology, and Advanced Photonics Research Institute) ;
  • Yu, Tae-Jun (Center for Femto-Atto Science and Technology, and Advanced Photonics Research Institute) ;
  • Lee, Seong-Ku (Center for Femto-Atto Science and Technology, and Advanced Photonics Research Institute) ;
  • Pae, Ki-Hong (Center for Femto-Atto Science and Technology, and Advanced Photonics Research Institute) ;
  • Hafz, Nasr (Center for Femto-Atto Science and Technology, and Advanced Photonics Research Institute) ;
  • Jeong, Tae-Moon (Center for Femto-Atto Science and Technology, and Advanced Photonics Research Institute) ;
  • Ko, Do-Kyeong (Center for Femto-Atto Science and Technology, and Advanced Photonics Research Institute) ;
  • Lee, Jong-Min (Center for Femto-Atto Science and Technology, and Advanced Photonics Research Institute)
  • Received : 2008.12.16
  • Accepted : 2009.03.11
  • Published : 2009.03.25

Abstract

In order to obtain high quality images of thin objects, we performed an experiment of proton radiography by using low energy protons generated from the interaction of an ultrashort ultraintense laser with solid targets. The protons were produced from a thin polyimide target irradiated by the laser pulse, and their maximum energy was estimated at up to 1.8 MeV. A CR-39 nuclear track detector was used as a proton radiography screen. The proton images were obtained by using an optical microscope and the spatial resolution was evaluated by a Modulation Transfer Function (MTF). We have achieved about $10\;{\mu}m$ spatial resolution of images. The obtained spatial resolution shows about $4{\sim}5$ times better value than the conventional X-ray radiography for inspection or non-destructive test (NDT) purpose.

Keywords

References

  1. D. Umstadter, 'Relativistic laser-plasma interactions,' J. Phys. D: Appl. Phys. 36, R151-R165 (2003) https://doi.org/10.1088/0022-3727/36/8/202
  2. J. A. Cookson, 'Radiography with protons,' Naturwissenschaften 61, 184-191 (1974) https://doi.org/10.1007/BF00599915
  3. S. Okihara, Y. Sentoku, K. Sueda, S. Shimzu, F. Sato, et al., 'Energetic protons generation in a thin plastic foil irradiated by intense femtosecond lasers,' J. Nucl. Sci. Technol. 39, 1–5 (2002), and references in therein https://doi.org/10.3327/jnst.39.1
  4. R. A. Snavely, M. H. Key, S. P. Hatchett, T. E. Cowan, M. Roth, et al., 'Intense high-energy proton beams from petawatt-laser irradiation of solids,' Phys. Rev. Lett. 85, 2945-2948 (2000) https://doi.org/10.1103/PhysRevLett.85.2945
  5. N. S. P. King, E. Ables, K. Adams, K. R. Alrick, J. F. Amann, et al., 'An 800-MeV proton radiography facility for dynamic experiments,' Nucl. Instrum. Methods Phys. Res. A 424, 84-91 (1999) https://doi.org/10.1016/S0168-9002(98)01241-8
  6. J. A. Cobble, R. P. Johnson, T. E. Cowan, N. R.-Le Galloudec, and M. Allen, 'High resolution laser-driven proton radiography,' J. Appl. Phys. 92, 1775-1779 (2002) https://doi.org/10.1063/1.1494128
  7. A. A. Andreev, V. A. Komarov, K. Yu. Platonov, and A. V. Charukhchev, 'Spatial resolving power of laser plasma ionography,' Tech. Phys. Lett. 33, 239-243 (2007) https://doi.org/10.1134/S1063785007030169
  8. S. Kar, M. Borghesi, P. Audebert, A. Benuzzi-Mounaix, T. Boehly, et al., 'Modeling of laser-driven proton radiography of dense matter,' High Energy Density Phys. 4, 26-40 (2008) https://doi.org/10.1016/j.hedp.2007.11.002
  9. I. W. Choi, C. M. Kim, T. M. Jeong, T. J. Yu, J. H. Sung, et al., 'Proton generation with 3-% energy conversion efficiency,' in Proc. OSK Summer Meeting (Phoenixpark, Korea, Jul. 2008), pp. 155-156
  10. J. H. Sung, T. J. Yu, S. K. Lee, T. M. Jeong, I. W. Choi, et al., 'Development of the ultrashort high-power femtosecond lasers at APRI,' in Proc. 4th ASILS 2008(GIST, Korea, Nov. 2008), pp. 68
  11. B. A. De Souza, S. C. Cabral, and R. T. Lopes, 'Alpha particle radiography with the CR-39 nuclear track detector,' Radiat. Meas. 24, 187-192 (1994) https://doi.org/10.1016/1350-4487(94)00088-I
  12. S. Kar, M. Borghesi, L. Romagnani, S. Takahashi, A. Zayats, et al., 'Analysis of latent tracks for MeV protons in CR-39,' J. Appl. Phys. 101, 044510 (2007) https://doi.org/10.1063/1.2433744
  13. M. A. Rana and I. E. Qureshi, 'Studies of CR-39 etch rates,' Nucl. Instrum. Methods Phys. Res. B 198, 129-134 (2002) https://doi.org/10.1016/S0168-583X(02)01526-4
  14. Y. L. Law, D. Nikezic, and K. N. Yu, 'Optical appearance of alpha-particle tracks in CR-39 SSNTDs,' Radiat. Meas. 43, S128-S131 (2008) https://doi.org/10.1016/j.radmeas.2008.03.030
  15. Anthony Brinton Wolbarst, Physics of Radiology (Prentice Hall International, London, UK, 1993) Chapters 18 and 24

Cited by

  1. Fine phantom image from laser-induced proton radiography with a spatial resolution of several μm vol.65, pp.1, 2014, https://doi.org/10.3938/jkps.65.6