DOI QR코드

DOI QR Code

Effects of the Micro-hole Target Structures on the Laser-driven Energetic Proton Generation

  • Pae, Ki-Hong (Advanced Photonics Research Institute & Center for Femto-Atto Science and Technology, GIST) ;
  • Choi, Il-Woo (Advanced Photonics Research Institute & Center for Femto-Atto Science and Technology, GIST) ;
  • Hahn, Sang-June (Department of Physics, Chung-Ang University) ;
  • Lee, Jong-Min (Advanced Photonics Research Institute & Center for Femto-Atto Science and Technology, GIST)
  • Received : 2009.01.05
  • Accepted : 2009.03.04
  • Published : 2009.03.25

Abstract

Micro-hole targets are studied to generate energetic protons from laser-thin foil targets by using 2-dimensional particle-in-cell simulations. By using a small hole, the maximum energy of the accelerated proton is increased to 4 times higher than that from a simple planar target. The main proton acceleration mechanism of the hole-targets is the electrostatic field created between the fast electrons accelerated by the laser pulse ponderomotive force combined with the vacuum heating and the target rear surface. But in this case, the proton angular distribution shows double-peak shape, which means poor collimation and low current density. By using a small cone-shaped hole, the maximum proton energy is increased 3 times higher than that from a simple planar target. Furthermore, the angular distribution of the accelerated protons shows good collimation.

Keywords

References

  1. S. C. Wilks, A. B. Langdon, T. E. Cowan, M. Roth, M. Singh, S. Hatchett, M. H. Key, D. Pennington, A. Mackinonn, and R. A. Snavely, 'Energetic proton generation in ultra-intense laser-solid interactions,' Phys. Plasmas 8, 542-549 (2001) https://doi.org/10.1063/1.1333697
  2. A. Macchi, F. Cattani, T. V. Liseykina, and F. Cornolti, 'Laser acceleration of ion bunches at the front surface of overdense plasmas,' Phys. Rev. Lett. 94, 165003 (2005) https://doi.org/10.1103/PhysRevLett.94.165003
  3. S. P. Hatchett et al, 'Electron, photon, and ion beams from the relativistic interaction of petawatt laser pulses with solid targets,' Phys. Plasmas 7, 2076-82 (2000) https://doi.org/10.1063/1.874030
  4. A. Maksimchuk, S. Gu, K. Flippo, D. Umstadter, and V. Yu. Bychenkov, 'Forward ion acceleration in thin films driven by a high-intensity laser,' Phys. Rev. Lett. 84, 4108-11 (2000) https://doi.org/10.1103/PhysRevLett.84.4108
  5. M. Allen, P. K. Patel, A. Mackinnon, D. Price, S. Wilks, and E. Morse, 'Direct experimental evidence of back-surface ion acceleration in laser-plasma interactions,' Phys. Rev. Lett. 93, 265004 (2004) https://doi.org/10.1103/PhysRevLett.93.265004
  6. H. J. Lee, K. H. Pae, H. Suk, and S. J. Hahn, 'Enhancement of high-energy ion generation by preplasmas in the inter action of an intense laser pulse with overdense plasmas,' Phys. Plasmas 11, 1726-9 (2004) https://doi.org/10.1063/1.1650844
  7. A. J. Mackinnon, M. Borghesi, S. Hatchett, M. H. Key, P. K. Patel, H. Campbell, A. Schiavi, R. Snavely, S. C. Wilks, and O. Willi, 'Effect of plasma scale length on multi-MeV proton production by intense laser pulses,' Phys. Rev. Lett. 86, 1769-72 (2001) https://doi.org/10.1103/PhysRevLett.86.1769
  8. K. A. Flippo et al, 'Increased efficiency of short-pulse laser-generated proton beams from novel flat-top cone targets,' Phys. Plasmas 15, 056709 (2008) https://doi.org/10.1063/1.2918125
  9. M. P. Liu, H. C. Wu, B. S. Xie, J. Liu, H. Y. Wang, and M. Y. Yu, 'Energetic collimated ion bunch generation from an ultraintense laser interacting with thin concave targets,' Phys. Plasmas 15, 063104 (2008) https://doi.org/10.1063/1.2937817
  10. T. Esirkepov et al, 'Proposed double-layer target for the generation of high-quality laser-accelerated ion beams,' Phys. Rev. Lett. 89, 175003 (2002) https://doi.org/10.1103/PhysRevLett.89.175003
  11. T. E. Cowan et al, 'Ultralow emittance, multi-MeV proton beams from a laser virtual-cathode plasma accelerator,' Phys. Rev. Lett. 92, 204801 (2004) https://doi.org/10.1103/PhysRevLett.92.204801
  12. S. M. Pfotenhauer et al, 'Spectral shaping of laser generated proton beams,' New J. Phys. 10, 033034 (2008) https://doi.org/10.1088/1367-2630/10/3/033034
  13. P. Mora, 'Plasma expansion into a vacuum,' Phys. Rev. Lett. 90, 185002 (2003) https://doi.org/10.1103/PhysRevLett.90.185002
  14. C. Nieter and J. R. Carry, 'VORPAL: a versatile plasma simulation code,' J. Comput. Phys. 196, 448-73 (2004) https://doi.org/10.1016/j.jcp.2003.11.004
  15. F. Brunel, 'Not-so-resonant, resonant absorption,' Phys. Rev. Lett. 59, 52-5 (1987) https://doi.org/10.1103/PhysRevLett.59.52