DOI QR코드

DOI QR Code

Four-beam Interference Optical System for Laser Micro- structuring Using Picosecond Laser

  • Received : 2008.11.08
  • Accepted : 2008.01.06
  • Published : 2009.03.25

Abstract

A four beam interference optical system for laser micro structuring using a pulse laser was demonstrated. The four beam interference optical system using a pulse laser(picosecond laser) can fabricate micro structure on mold material(NAK80) directly. Micro structure on the polymer can be reproduced economically by injection molding of the micro structure on the mold material. The four beam interference optical system was composed by the DOE(Diffractive Optical Element) and two lenses. The laser intensity distribution of four beam interference was explained by an interference optics point of view and by the image optics point of view. We revealed that both views showed the same result. The laser power distribution of a $1{\mu}m$ peak pattern was made by the four beam interference optical system and measured by the objective lens and CCD. A $1{\mu}m$ pitch dot pattern on the mold material was fabricated and measured by SEM(Scanning Electron Microscopy).

Keywords

References

  1. N. N. Nedialkov, S. E. Imamova, P. A. Atanasov, G. Heusel, D. Breitling, A. Ruf, H. Hugel, F. Dausinger, and P. Berger, 'Laser ablation of iron by ultrashort laser pulses,' Thin Solid Films 453-454, 496-500 (2004) https://doi.org/10.1016/j.tsf.2003.11.112
  2. N. M, Bulgakova and Igor M. Bourakov, 'Phase explosion under ultrashort pulsed laser blation: modeling with analysis of metastable state of melt,' Applied Surface Science 197-198, 41-44 (2002) https://doi.org/10.1016/S0169-4332(02)00300-8
  3. K. R. Chen, J. N. Leboeuf, R. F. Wood, D. B. Geohegan, J. M. Donato, C. L. Liu, and A. A. Puretzky, 'Laser-solid interaction and dynamics of laser-ablated materials,' Applied Surface Science 96-98, 45-49 (1996) https://doi.org/10.1016/0169-4332(95)00463-7
  4. I.-B. Sohn, Y.-C. Noh, Y.-S. Kim, D.-K. Ko, J. Lee, and Y.-J. Choi, 'Laser ablation of polypropylene films using nanosecond, picosecond, and femtosecond laser,' J. Opt. Soc. Korea 12, 38-41 (2008) https://doi.org/10.3807/JOSK.2008.12.1.038
  5. B. Wolff-Rottke, J. Ihlemann, H. Schmit, and A. Scholl, 'Influence of the laser-spot diameter on photo-ablation rates,' Appl. Phys. A 60, 13-17 (1995) https://doi.org/10.1007/BF01577606
  6. A. Yoshida, and T. Asakura, 'Propagation and focusing of Gaussian laser beams beyond conventional diffraction limit,' Opt. Comm. 123, 694-704 (1996) https://doi.org/10.1016/0030-4018(95)00484-X
  7. T. Kondo, S. Juodkazis, V. Mizeikis, S. Matsuo, and H. Misawa, 'Fabrication of three-dimensional periodic microstructures in photo resist SU-8 by phase-controlled holographic lithography,' New journal of Physics 8, 250-257 (2006) https://doi.org/10.1088/1367-2630/8/10/250
  8. T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, 'Multi photon fabrication of periodic structures by multi beam interference of femtosecond pulses,' Appl. Phys. lett. 82, 28-35 (2003) https://doi.org/10.1063/1.1534940
  9. T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, 'Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,' Appl. Phys. lett. 79, 6-13 (2001) https://doi.org/10.1063/1.1391232
  10. H. Misawa, T. Kondo, S. Juodkazis, V. Mizeikis, and S. Matsuo, 'Holographic lithography of periodic two-and three-dimensional microstructures in photoresist SU-8,' Opt. Exp. 14, 7943-7953 (2006) https://doi.org/10.1364/OE.14.007943
  11. Y. Nakata, T. Okada, and M. Maeda, 'Lithographical laser ablation using femtosecond laser,' Appl. Phys. A 79, 2858-2865 (2004) https://doi.org/10.1007/s00339-004-2825-5
  12. B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tunnermann, 'Femtosecond, picosecond and nanosecond laser ablation of solids,' Appl. Phys. A 63, 109-115 (1996) https://doi.org/10.1007/BF01567637
  13. B. C. Choi, M. S. Lee, J.-H. Choi, and C. S. Park, 'Application of micromachining in the PLC optical splitter packaging,' J. Opt. Soc. Korea 7, 166-173 (2003) https://doi.org/10.3807/JOSK.2003.7.3.166
  14. T. Baldacchini, J. E. Carey, M. Zhou, and E. Mazur, 'Super hydrophobic surfaces prepared by micro structuring of silicon using a femtosecond laser,' Langmuir 22, 4917-4919 (2006) https://doi.org/10.1021/la053374k
  15. M. T. Khorasani, H. Mirzadeh, and P. G. Sammes, 'Laser induced surface modification of polydimethylsiloxane as a super-hydrophobic material,' Radiat. Phys. Chem. 47, 881-888 (1996) https://doi.org/10.1016/0969-806X(95)00166-U
  16. V. Zorba, L. Persano, D. Pisignano, A. Athanassiou, E. Stratakis, R. Cingolani, P. Tzanetakis, and C. Fotakis, 'Making silicon hydrophobic: wettability control by two-length scale simultaneous pattering with femtosecond laser irradiation,' Institute of physics publishing Nanotechnology 17, 3234-3238 (2006) https://doi.org/10.1088/0957-4484/17/13/026

Cited by

  1. Fabrication of Random Microspikes on Mold Metal by Ultrashort Laser Ablation for Hydrophilic Surface vol.49, pp.10, 2010, https://doi.org/10.1143/JJAP.49.106503