DOI QR코드

DOI QR Code

Reduction of Reconstruction Errors in Kinoform CGHs by Modified Simulated Annealing Algorithm

  • Yang, Han-Jin (School of Engineering, Information and Communication University) ;
  • Cho, Jeong-Sik (School of Engineering, Information and Communication University) ;
  • Won, Yong-Hyub (School of Engineering, Information and Communication University)
  • Received : 2009.01.05
  • Accepted : 2009.03.02
  • Published : 2009.03.25

Abstract

In this paper, a conventional simulated annealing (SA) method for optimization of a kinoform computer generated hologram (CGH) is analyzed and the SA method is modified to reduce a reconstruction error rate (ER) of the CGH. The dependences of the quantization level of the hologram pattern and the size of the data on the ER are analyzed. To overcome saturation of the ER, the conventional SA method is modified as it magnifies a Fourier-transformed pattern in the intermediate step. The proposed method can achieve a small ER less than 1%, which is impossible in the conventional SA method.

Keywords

References

  1. W. H. Lee, 'Binary computer-generated holograms,' Appl. Opt. 18, 3661-3669 (1979) https://doi.org/10.1364/AO.18.003661
  2. J. Ashley, M.-P Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and G. T. Sincerbox, 'Holographic data storage,' IBM J. Res. Develop. 44, 341-368 (2000) https://doi.org/10.1147/rd.443.0341
  3. T.-C. Poon Ed., Digital Holography and Three-Dimensional Display: Principles and Applications (Springer, Berlin, Germany, 2006)
  4. N. Takahashi and T. Fujiyoshi, 'System and process for reading hologram code, hologram and card containing hologram,' U.S. Patent 5444225 (1995)
  5. M. P. Dames, R. J. Dowling, P. McKee, and D. Wood, 'Efficient optical elements to generate intensity weighted spot arrays: design and fabrication,' Appl. Opt. 30, 2685-2691 (1991) https://doi.org/10.1364/AO.30.002685
  6. A. Cable, P. Mesh, and T. Wilkinson, 'Production of computer-generated holograms on recordable compact disk media using a compact disk writer,' Opt. Eng. 42, 2514-2520 (2003) https://doi.org/10.1117/1.1598209
  7. J. Kim, J. Choi, J. An, N. Kim, and K. Lee, 'Digital holographic security system based on random phase encoded reference beams and fingerprint identification,' Opt. Comm. 247, 265-274 (2005) https://doi.org/10.1016/j.optcom.2004.11.066
  8. L. B. Lesem, P. M. Hirsch, and J. A. Jordan, Jr., 'The kinoform: a new wavefront reconstruction device,' IBM J. Res. Develop. 13, 150-155 (1969) https://doi.org/10.1147/rd.132.0150
  9. Y. Hamano and H. Hirai, 'Optical pickup and optical information processing apparatus,' PCT Patent, WO2007/123250 (2007)
  10. A. Kolodziejczyk, Z. Jaroszewiczb, A. Kowalikc, and O. Quinterod, 'Kinoform sampling filter,' Opt. Comm. 200, 35-42 (2001) https://doi.org/10.1016/S0030-4018(01)01651-0
  11. M. C. Gallagher and B. Lui, 'Method for computing kinoforms that reduces image reconstruction error,' Appl. Opt. 12, 2328-2335 (1973) https://doi.org/10.1364/AO.12.002328
  12. T. Yatagai and M. Takeda, 'Effect of phase nonlinearity in kinoform,' Optik 43, 337-352 (1975)
  13. J. R. Fienup, 'Iterative method applied to image reconstruction and to computer-generated holograms,' Opt. Eng. 19, 297-305 (1980)
  14. F. Wyrowski and O. Bryngdahl, 'Iterative Fouriertransform algorithm applied to computer holography,' J. Opt. Soc. Am. 5, 1058-1065 (1988) https://doi.org/10.1364/JOSAA.5.001058
  15. M. A. Seldowitz, J. P. Allebach, and D. W. Sweeney, 'Synthesis of digital holograms by direct binary search,' Appl. Opt. 26, 2788-2798 (1987) https://doi.org/10.1364/AO.26.002788
  16. N. Yoshikawa and T. Yatagai, 'Phase optimization of a kinoform by SA,' Appl. Opt 33, 863-868 (1994) https://doi.org/10.1364/AO.33.000863

Cited by

  1. Accuracy Assessment for Measuring Surface Figures of Large Aspheric Mirrors vol.13, pp.2, 2009, https://doi.org/10.3807/JOSK.2009.13.2.178
  2. New Iterative Filter for Fringe Adjustment of Joint Transform Correlator vol.14, pp.1, 2010, https://doi.org/10.3807/JOSK.2010.14.1.033
  3. Application of Kinoform CGHs to an ID Tag System vol.2, pp.4, 2010, https://doi.org/10.1109/JPHOT.2010.2050872
  4. Fast and low error color encrypted computer-generated hologram based on amplitude-phase modulation with a random mask for an identification tag application vol.285, pp.12, 2012, https://doi.org/10.1016/j.optcom.2012.01.076
  5. High-Speed Indoor Optical Wireless Links Employing Fast Angle and Power Adaptive Computer-Generated Holograms With Imaging Receivers vol.64, pp.4, 2016, https://doi.org/10.1109/TCOMM.2016.2519415
  6. Analysis of Fingerprint Recognition Characteristics Based on New CGH Direct Comparison Method and Nonlinear Joint Transform Correlator vol.13, pp.4, 2009, https://doi.org/10.3807/JOSK.2009.13.4.445