Effects of Heat and pH Treatments on Antioxidant Properties of Ishige okamurai Extract

패 추출물의 항산화능에 미치는 열과 pH의 영향

  • Kim, Mi-Jung (Faculty of Food Science and Technology, and Institute of Food Science, Pukyong National University) ;
  • Choi, Jung-Soo (Subdivision of Food Science, Kyungnam College of Information and Technology) ;
  • Song, Eu-Jin (Faculty of Food Science and Technology, and Institute of Food Science, Pukyong National University) ;
  • Lee, So-Young (Faculty of Food Science and Technology, and Institute of Food Science, Pukyong National University) ;
  • Kim, Koth-Bong-Woo-Ri (Faculty of Food Science and Technology, and Institute of Food Science, Pukyong National University) ;
  • Lee, So-Jeong (Faculty of Food Science and Technology, and Institute of Food Science, Pukyong National University) ;
  • Kim, Seo-Jin (Faculty of Food Science and Technology, and Institute of Food Science, Pukyong National University) ;
  • Yoon, So-Young (Faculty of Food Science and Technology, and Institute of Food Science, Pukyong National University) ;
  • Jeon, You-Jin (Faculty of Applied Marine Biotechnology, Cheju National University) ;
  • Ahn, Dong-Hyun (Faculty of Food Science and Technology, and Institute of Food Science, Pukyong National University)
  • 김미정 (부경대학교 식품공학과 및 식품연구소) ;
  • 최정수 (경남정보대학 식품과학계열) ;
  • 송유진 (부경대학교 식품공학과 및 식품연구소) ;
  • 이소영 (부경대학교 식품공학과 및 식품연구소) ;
  • 김꽃봉우리 (부경대학교 식품공학과 및 식품연구소) ;
  • 이소정 (부경대학교 식품공학과 및 식품연구소) ;
  • 김서진 (부경대학교 식품공학과 및 식품연구소) ;
  • 윤소영 (부경대학교 식품공학과 및 식품연구소) ;
  • 전유진 (제주대학교 해양생물공학과) ;
  • 안동현 (부경대학교 식품공학과 및 식품연구소)
  • Published : 2009.02.28

Abstract

This study was carried out to determine the optimum extraction conditions for Ishige okamurai by comparing the yields, total phenolic compound content (TPC), and antioxidant properties of its 95%, 70%, 50% fermented ethyl alcohol and water extracts. Additionally, the effects of heat and pH treatments on the antioxidant properties of the extracts were evaluated by their TPC and 1,1-diphenyl-2-picrylhydrazyl(DPPH) radical scavenging capabilities. The yields of the extracts were greatest in the order of water > 50% > 70% > 95% fermented ethyl alcohol, and the TPC of the 70% (26.18%) and 50% fermented ethyl alcohol (27.56%) extracts were higher than those of the others. However, in terms of DPPH radical scavenging and ferrous-reducing power, the 70% fermented ethyl alcohol extract of Ishige okamurai showed the highest antioxidant effects. Additionally, in the results for the heat and pH treatments, the antioxidant properties of the 70% fermented ethyl alcohol extract were not influenced by the treatment conditions except at pH 10.

본 연구에서는 패 추출물의 항산화능을 알아보고, 열 및 pH에 대한 안정성을 확인하여 식품 산업에서 천연항산화제로써의 적용가능성을 알아보았다. 이에 패를 95, 70, 50% 발효주정 및 물로 추출한 뒤 각 추출물의 항산화능을 측정하여 최적 추출 조건을 선정하였고, 최적 추출물의 이화학적 특성과 열 및 pH 처리에 따른 안정성을 알아보았다. 그 결과 70% 발효주정 추출물에서 17%의 비교적 높은 수율과 26 mg/g의 높은 총 페놀화합물 함량을 보이며, 0.1 mg/mL에서 약 73%의 높은 DPPH 라디칼 소거능을 보여 이를 최적 추출물로 선정하였다. 70% 발효주정 추출물을 $60^{\circ}C$에서 10, 30 및 60분, $80^{\circ}C$$100^{\circ}C$에서 10분, 20분 그리고 $121^{\circ}C$에서 15분간 열처리하여 열안정성을 알아본 결과, 무처리구 및 모든 처리구에서 94%의 DPPH 라디칼 소거능과, 24 mg/g 이상의 총 페놀화합물 함량을 유지하여 높은 열안정성을 보였다. 패 70% 발효주정 추출물의 pH처리에 의한 항산화능의 안정성을 알아본 결과, pH 2, 4, 6 및 8 처리구의 경우 무처리구와 유사한 항산화능을 보여 높은 pH 안정성을 나타냈으나, pH 10 처리구의 경우 89%의 라디칼 소거능과 20 mg/g의 총 페놀화합물 함량을 보여 다소 감소된 항산화능을 보였다. 이상의 결과를 종합해 볼 때, 패 70% 발효주정 추출물은 높은 수율과 항산화능을 가지며 열 및 pH에 대해 높은 안정성을 가져 식품 산업에 유용하게 사용 될 수 있을 것으로 사료 된다.

Keywords

References

  1. Kim YY, Lee KW, Kim GB, Cho YJ. Studies on physiochemical and biological propertiea of depolymerized alginate from sea tangle, Laminaria japonicus by thermal decomposition. J. Korean Fish Soc. 33: 393-398 (2000)
  2. Lee HA, Lee SS, Shin HK. Effects of dietary fiber source on the composition of interstinal microflora in rats. Korean J. Nutr. 27: 988-995 (1994)
  3. Park EY, Lee SS. Effects of dietary fiber on the serum lipid level and bowel function in aged rats. Korean J. Nutr. 29: 934-942 (1996)
  4. Haung HL, Wang BG. Antioxidant capacity and lipophilic content of seaweeds collected from the Qungdao coastline. J. Agr. Food Chem. 52: 4993-4997 (2004) https://doi.org/10.1021/jf049575w
  5. Yan X, Nagata T, Fan S. Antioxidative activities in some common seaweeds. Plant Food Hum. Nutr. 52: 253-262 (1998) https://doi.org/10.1023/A:1008007014659
  6. Kim EH, Vuksan V, Wong E. The relationship between viscosity of soluble dietary fiber and their hypoglycemic effects. Korean J. Nutr. 29: 615-621 (1996)
  7. Cho YJ, Bang MA. Effects of dietary seaweeds on blood glucose, lipid and glutathione enzymes in streptozotocin-induced diabeticrats. J. Korean Soc. Food Sci. Nutr. 33: 987-994 (2004) https://doi.org/10.3746/jkfn.2004.33.6.987
  8. Jung BM, Ahn CB, Kang SJ, Park JH, Chung DH. Effects of Hijikia fusiforme extracts on lipid metabolism and liver antioxidative enzyme activities in triton-induced hyperlipidemic rats. J. Korean Soc. Food. Sci. Nutr. 30: 1184-1189 (2001)
  9. Cho KJ, Lee YS, Ryu BH. Antitumor effects and immunology activity of seaweeds toward sarcoma-180. J. Korean Soc. Food Sci. Nutr. 23: 345-352 (1990)
  10. Yoon JA, Yu KW, Jun WJ, Cho HY, Son YS, Yang HC. Screening of anticoagulant activity in the extracts of edible seaweeds and optimization of extraction condition. J. Korean Soc. Food Sci. Nutr. 29: 1098-1106 (2000)
  11. Girard JP, Marion C, liutkus M, Boucard m, Rechencq E, Vidal JP, Rossi JC. Hypotensive constituents of marine algae. 1. Pharmacological Pharmacological studies of laminine. Planta Med. 54: 193-196 (1988) https://doi.org/10.1055/s-2006-962401
  12. Lee NH, O KL. Screening of radical scavenging effects from marine algae. Cheju J. Life Sci. 3: 95-101 (2000)
  13. Ahn MJ, Yoon KD, Kim CY, Kim JH, Shin CG, Kim J. Inhibitory activity on HIV-1 reverse transcriptase and integrase of a carmalol derivative from a brown Alga, Ishige okamurae. Phytother. Res. 20: 711-713 (2006) https://doi.org/10.1002/ptr.1939
  14. Athukorala Y, Lee KW, Kim SK, Jeon YJ. Anticoagulant activity of marine green and brown algae collected from Jeju Island in Korea. Bioresource Technol. 98: 1711-1716 (2007) https://doi.org/10.1016/j.biortech.2006.07.034
  15. Nakamura T, Nagayama k, Kawaguchi S. High Tocopherol Content in a Brown Alga Ishige okamurae. Fisheries Sci. 60: 793-794 (1994)
  16. Meade M, Nishizawa K. Laminaran of Ishige okamurai. Carbohyd. Res. 7: 97-99 (1968) https://doi.org/10.1016/S0008-6215(00)81442-1
  17. Lee YS, Joo EY, Kim NW. Antioxidant activity of extracts from the Lespedeza bicolor. Korean J. Food Pres. 12: 75-79 (2005)
  18. Kan IH, Cha JH, Han JH, Lee SW, Kim HJ, Kwon SH, Ham IH, Hwano BS, Whang WK. Isolation of antioxidant from domestic Crataegus pinnatifida Bunge leaves. Korean J. Pharmacogn. 36:121-128 (2005)
  19. Dziezak JD. Andtioxidants. Food technol. Chicago 40: 94 (1986)
  20. Chung HY. Development of natural antioxidants stable at frying temperatures. J. Korean Soc. Food Sci. Nutr. 10(4): 564-573 (1997)
  21. Halliwell B, Hoult RJ, Blake DR. Oxidants, inflammation, and anti-inflammatory drugs. Faseb J. 2: 2867-2870 (1988)
  22. Corl MM. Antioxidant activity of tocopherols and ascorbyl palmitate and their mode of action. JAOCS. 51: 321 (1974) https://doi.org/10.1007/BF02633006
  23. J.M. Cruz, E. Conde, H. Dominguez, J.C. Parajo. Thermal stability of antioxidants obtained from wood and industrial wastes. Food Chem. 100: 1059-1064 (2007) https://doi.org/10.1016/j.foodchem.2005.11.012
  24. Park KB, Han GH, Kim BY. Utilization of the natural antioxidants for the anti-peroxidation of almond cracker. J. Korean Soc. Food Sci. Nutr. 32: 131-136 (2003) https://doi.org/10.3746/jkfn.2003.32.1.131
  25. Swain T, Hillis WE. The phenolic constituents of Prunus domestica. I-The quantitative analysis of phenolic constituents. J. Sci. Food Agr. 10: 63-68 (1959)
  26. Blois MS. Antioxidant determinations by the use or a stable free radical. Nature 181: 1990-2100 (1958)
  27. Shimada K, Fujikawa K, Yahara K, Nakamura T. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agr. Food Chem. 40: 945-948 (1992) https://doi.org/10.1021/jf00018a005
  28. Oyaizu M. Studies on products of browning reactions: Antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. 44: 307-315 (1986) https://doi.org/10.5264/eiyogakuzashi.44.307
  29. Cho SH, Kang SE, Cho JY, Kim AR, Park SM, Hong YK, Ahn DH. The antioxidant properties of brown seaweed (Sargassum siliquastrum) extracts. J. Med. Food 10: 479-485 (2007) https://doi.org/10.1089/jmf.2006.099
  30. Cuvelier ME, Richahard H, Berset C. Antioxidative activity of phenolic composition of pilot plant and commercial extracts of sage and rosemary. J. Am. Oil. Chem. Soc. 73: 645-652 (1998) https://doi.org/10.1007/BF02518121
  31. Santas J, Carbo R, Gordon MH, Almajano MP. Comparison of the antioxidant activity of two spanish onion varieties. Food Chem. 107: 1210-1216 (2008) https://doi.org/10.1016/j.foodchem.2007.09.056
  32. Zhao B, Hall CA. Composition and antioxidant activity of raisin extracts obtained from various solvents. Food Chem. 108: 511-518 (2008) https://doi.org/10.1016/j.foodchem.2007.11.003
  33. Dorman HJD, Kosar M, Kahlos K, Holm Y, Hiltunen R. Antioxidant properties and composition of aqueous extracts from Mentha species, hybrids, varieties, and cultivars. J. Agr. Food Chem. 51:4563-4569 (2003) https://doi.org/10.1021/jf034108k
  34. Cho SH, Cho JY, Kang SE, Hong YK, Ahn DH. Antioxidant activity of mojabanchromanol, a novel chromene, isolated from blown alga Sargassum siliquastrum. J. Environ. Biol. 29: 479-484 (2008)
  35. Suresh Kumar K, Ganesan K, Subba Rao PV. Antioxidant potential of solvent extracts of Kappaphycus alvarezii (Doty) Doty-an edible seaweed. Food Chem. 107: 289-295 (2008) https://doi.org/10.1016/j.foodchem.2007.08.016
  36. Kanner J, mendel H. Prooxidant and antioxidant effects of ascorbic acid and methal salts in a ${\Bate}$-carotene-linoleate model system. J. Food Sci. 42: 60-64 (1977) https://doi.org/10.1111/j.1365-2621.1977.tb01218.x
  37. Seog HM, Seo MS, Kim SR, Park YK, Lee YT. Characteristics of barly polyphenol extract(BPE) separated from pearling byproducts. Korean J. Food Sci. Technol. 34: 775-779 (2002)
  38. Decker EA, Hultin HO. Lipid oxidation in muscle foods via redox iron. pp. 1-11. In: Lipid oxidation in food. St. Angelo AJ(ed.). ACS Symposium Series 500, Washington DC, USA (1992)
  39. Lindsay RC. Food additives pp. 778-780. In: Food chemistryFennema OR (ed). Marcel Dekker Inc., New York, NY, USA (1996)
  40. Gordon MH. The mechanism of antioxidant action in vitro. pp. 1-18. In: Food antioxidants. Hudson BJF (ed). Elsevier Applied Science, London, UK (1990)
  41. Feng T, Du Y, Li J, Hu Y, Kennedy JF. Enhancement of antioxidant activity of chitosan by irradiation. Carbohyd. Polym. 73:126-132 (2008) https://doi.org/10.1016/j.carbpol.2007.11.003
  42. Lee Y, Huang GW, Liang ZC, Mau JL. Antioxidant properties of three extracts from Pleurotus citrinopieatus. LWT-Food Sci. Technol. 40: 823-833 (2007) https://doi.org/10.1016/j.lwt.2006.04.002
  43. Arabshahi-Delouee S, Urooj A. Antioxidant properties of various solvent extracts of mulberry (Morus indica L.) leaves. Food Chem. 102: 1233-1240 (2007) https://doi.org/10.1016/j.foodchem.2006.07.013
  44. Kwak CS, Kim SA, Lee MS. The correlation of antioxidative effects of 5 korean common edible seaweeds and total polyphenol content. J. Korean Soc. Food Sci. Nutr. 34: 1143-1150 (2005) https://doi.org/10.3746/jkfn.2005.34.8.1143
  45. Kandaswami C, Middleton EJ. Free radical scavenging and antioxidant activity of plant flavonoids, pp 351-376. In: Free radicals in diagnostic medicine. Armstrong D (ed). Plenum Press, London, UK (1994)
  46. Son JH, Jo C, Kim MR, Kim JO, Byun MW. Effects of gamma irradiation on removal of undesirable color from green teaextracts. J. Korean Soc. Food Sci. Nutr. 30: 1305-1308 (2001)
  47. Gazzani G, Papetti A, Massolini G, Daglia M. Antioxidative and pro-oxidant activity of water soluble components of some common diet vegetables and the effects of thermal treatment. Food Chem. 6: 4118-4122 (1998)
  48. Sanhueza J, Nieto S, Valenzuela A. Thermal stability of some commercial synthetic antioxidants. JAOCS. 77: 933-936 (2000) https://doi.org/10.1007/s11746-000-0147-9
  49. Cruz JM, Conde E, Dominguez H, Parajo JC. Thermal stability of antioxidnats obtained from wood and industrial wastes. Food Chem. 100: 1059-1064 (2007) https://doi.org/10.1016/j.foodchem.2005.11.012
  50. Sohn HY, Kwon CS, Son KH, Kwon GS, Kwon YS, Ryi HY, Kum EJ. Antithrombosis and antioxidant activity of methanol extract from different brands of rice. J. Korean Soc. Food Sci. Nutr. 34: 593-598 (2005) https://doi.org/10.3746/jkfn.2005.34.5.593
  51. Kown HJ, Lee KH, Kim JH, Chun SS, Cho WS. Effects of protease on the extraction and properties of the protein from silkworm pupa. J. Korean Soc. Appl. Biol. Chem. 49: 304-308 (2006)
  52. Lim SI. Purification and characterization of protease produces by Aspergillus wentii isolated from korean traditional Meju. Korean J. Food Sci. Technol. 32: 161-167 (2000)
  53. Torskangerpoll K, Andersen OM. Colour stability of anthocyanins in aqueous solutions at various pH values. Food Chem. 89: 427-440 (2005) https://doi.org/10.1016/j.foodchem.2004.03.002
  54. Kim SJ, Kweon DH, Lee JH. Investigation of antioxidative activity and stability of ethanol extracts of licorice root(Glycyrrgizaglabra). Korean J. Food Sci. Technol. 38: 584-588 (2006)
  55. Koo JG, Park JH. Chemical and gelling properties of alkali-modified porphyran. J. Korean Fish. Soc. 32: 271-275 (1999)