Protective Effect of Glycoprotein Isolated from Cudrania tricuspidata on Liver in $CCl_4$-treated A/J Mice

생쥐에 있어서 꾸지뽕 당단백질의 간보호 효과

  • Joo, Heon-Yeong (Molecular Biochemistry Laboratory, Biotechnology Research Institute, Chonnam National University) ;
  • Lim, Kye-Taek (Molecular Biochemistry Laboratory, Biotechnology Research Institute, Chonnam National University)
  • 주헌영 (전남대학교 생명공학연구소) ;
  • 임계택 (전남대학교 생명공학연구소)
  • Published : 2009.02.28

Abstract

This study aimed to determine whether or not glycoprotein isolated from Cudrania tricuspidata Bureau fruit(CTB glycoprotein) exerts a hepatoprotective effect on liver injury induced by the administration of carbon tetrachloride($CCl_4$, 1.0mL/kg) to A/J mice. Following the administration of CTB glycoprotein(0-20mg/kg), the activities of antioxidant enzymes (superoxide dismutase(SOD), catalase(CAT), and glutathione peroxidase(GPx)), and the quantities of measured thiobarbituric acid reactive substances(TBARS), lactate dehydrogenase(LDH), and nitric oxide(NO) were evaluated from the murine liver tissues and plasma. Additionally, the activity of nuclear factor-kappa B(NF-${\kappa}B$) was assessed after pretreatment with $CCl_4$. When the mice were treated with $CCl_4$ alone, the activities of antioxidative enzymes reduced but amounts of TBARS, LDH, and NO increased. However, the results of treatment with CTB glycoprotein(10 and 20 mg/kg) revealed significantly increased activities of antioxidant enzymes(SOD, CAT, and GPx), as compared with $CCl_4$ alone. On the other hand, the result showed significant diminutions of the quantities of TBARS, LDH, and NO after treatment with CTB glycoprotein(10 and 20 mg/kg), as compared to $CCl_4$ alone. The activity of NF-${\kappa}B$ also declined after pretreatment with CTB glycoprotein, as compared with $CCl_4$ treatment alone. Thus, it is suggested that the CTB glycoprotein exerts a protective effect against $CCl_4$-induced liver injury in A/J mice.

꾸지뽕 당단백질이 간의 조직에 존재하는 항산화계 해독효소의 활성을 증가시켜서 $CCl_4$로 유도된 간독성화 과정에서 생성된 ROS에 의해 야기되는 산화적 스트레스를 억제하는 scavenger로서 기능을 가지고 있는 것으로 분석된다. 또한 혈청 중 LDH 활성증가는 간 및 기타조직의 질환 및 악성 종양 등에서 나타나는 소견으로 LDH를 내포한 조직이 파괴될 때 혈액으로 흘러나와 혈중 LDH가 상승하며, 혈액 중 지질과산화 반응은 생체조직막의 다가불포화지방산 유리기에 의해 산화적 분해를 일으키는 지표로 사용되는 TBARS의 수치, DNA 염기의 deamination 등을 유도함으로써, 유전자의 돌연변이(mutagenesis)로 인한 세포독성을 일으키는 NO 등의 수치가 유의적인 수준으로 억제될 뿐만 아니라, 염증 매개시 단백질인 NF-kB(p50)을 억제함으로써 $CCl_4$에 의한 간독성 과정에서 촉진된 염증 신호전달기전을 억제할 수 있었다. 따라서 꾸지뽕 당단백질은 탁월한 천연 항산화제로서 간의 독성 및 염증 반응을 억제하는 것으로 실험결과 분석된다.

Keywords

References

  1. Harrison DG. Endothelial function and oxidant stress. Clin. Cardiol. 20: II-11-17 (1997)
  2. Moody CS, Hanssan HM. Mutagenicity of oxygen free radicals. Proc. Natl. Acad. Sci. USA 79: 2855-22859 (1982) https://doi.org/10.1073/pnas.79.9.2855
  3. Evance CR, hallivell B, Lunt GG. Free Fadicals and Oxidative Stress: Environment, Drug and Food Additives. Ashgate Publishing Co., Alderghot, UK. pp. 1-31 (1995)
  4. Sozmen EY, Tanyakin T, Onat T, kufay F, Erlacin S. Ethanolinduced oxidative stress and memvrane injury in rat erythrocytes Eur. J. Cilin. Chem. Clin. Biochem. 32: 741-744 (1994)
  5. Kim SM, Cho YS, Kim EJ, Han HP, Lee SH, Sung SK. Effect of water extracts of Salvia milrorrhixa Bge. Prunus persica Stokes, Angelica gigas Nakai and Pinus strobes on lipid oxidation. J. Korean Soc Food Sci. Nur. 27: 339-405 (1998)
  6. Pazczola De. Desiener food. Food Technol.-Chicago 47: 92-101(1993)
  7. Sadaki O. The development of functional foods and materials. Bioindustry 13: 44-50 (1996)
  8. Elliott MJ. Biological properties of plant flavonoids: An overview. J. Pharmacog. 34: 344-348 (1996)
  9. Seef LB, Lindsay KL, Bacon BR, Kresina TF, Hoofnagle JH. Complementary and alternative medicine in chronic liver disease. Hepatology 34: 595-603 (2001) https://doi.org/10.1053/jhep.2001.27445
  10. Cay MC, Lai EK, Poyer JL, Dubose CM, Janzen EG. Oxygen and carbon-centered free redical formation during carbon tetrachloride metabolism. J. Biol. Chem. 259: 2135-2143 (1984)
  11. Kim DH, Yoon SH. Hepatoprotective effects of sosihotang on $CCI_4$ induced liver injury in rats. J Korean Soc. Hyg. Sci. 4: 1-6 (1998)
  12. Weddle CC, Hornbrook KR, McCay PB. Lipid peroxidation and alteration of membrane lipids in isolated hepatocytes exposed to carbon tetrachloride. J. Biol. Chem. 251: 4973-4978 (1976)
  13. Farrel GC, George J, Hall PLM, McCullough AJ. Fatty liver disease;NASH and related disorders. Geoffery CF(ed). Blackwell Publishing, Oxford, UK (2004)
  14. Zawaski K, Gruebele A, Kaplan D, Reddy S, Mortensen A, Novak RF. Evidence for enhanced expression of c-fos, cjun,and the Ca (2+)-activated neutral protease in rat liver following carbon tetrachloride administration. Biochem. Bioph. Res. Co. 197: 585-590 (1993) https://doi.org/10.1006/bbrc.1993.2519
  15. Camandola S, Scavazza A, Leonarduzzi G, Biasi F, Chiarpotto E, Azzi A, Poli G. Biogenic 4-hydroxy-2-nonenal activates transcription factor AP-1 but not NF-kappa B in cells of the macrophage lineage. Biofactors 6: 173-179 (1997) https://doi.org/10.1002/biof.5520060211
  16. Wu J, Zern MA. NF-kappa B, liposomes and pathogenesisof hepatic injury and fibrosis. Front. Biosci. 4: D520-D527 (1999)
  17. Cesaratto L, Vascotto C, Calligaris S, Tell G. The importance of redox state in liver damage. Ann. Hepatol. 3: 86-92 (2004)
  18. Ohshima H, Tazawa H, Sylla BS, Sawa T. Prevention of human cancer by modulation of chronicinflammatory processes. Mutat. Res. 591: 110-122 (2005) https://doi.org/10.1016/j.mrfmmm.2005.03.030
  19. Lee CB. Dehanshikmuldogam(A field guide to Korean plants). Hyangmoonsha, Seoul, Korea. p.285 (1985)
  20. Kangjoshinewhakwon : Jungyakdesajon(Great dictionary of Chinese medicine). 2nd ed, Sohakkyan, Shanghai, China. p.2383 (1985)
  21. Kim SH, Kim NJ, Chon JS, Park JC. Determination of flavonoid by HPLC and biological activities from the leaves of Cudrania tricuspidata Bureau J. Korean Soc. Food Sci. Nutr. 22: 68-72 (1993)
  22. Otlersen T, Vance B, Doorenbos NJ, Chang BL, EI-Feraly FS. The crystal structure of cudranone, 2,6,3'-trihydroxy-4-methoxy-2'-(3-methoxy-2-buternyl)-I, a new antimicrobial agent from Cudrania chochinchinensis. Acta Chem. Scand B. 31: 434-436 (1977)
  23. Chang CH, Lin CC, Hattori M, Namba T. Effects of anti-lipid peroxidation of Cudrania cochinchinensis var. gerontogea. J. Ethnopharomacol. 44: 179-185 (1994)
  24. Lowry OH, Rosebrough NT, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193: 265-275 (1951)
  25. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350-356 (1956) https://doi.org/10.1021/ac60111a017
  26. Long RM, Moore L. Biochemical evaluation of rat heaptocyte primary cultures as a midel for carbon tertrachloride hepatotoxicity:Comparative strudies in vivo and in vitro. Toxicol. Appl. Pharm. 92: 295-306 (1988) https://doi.org/10.1016/0041-008X(88)90389-4
  27. Beauchamp C, Fridovich I. Superoxide dismurase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44:276-287 (1971) https://doi.org/10.1016/0003-2697(71)90370-8
  28. Thomson JF, Nance SL, Tollaksen SL. Spectrophotometric assay of catalase with perborate as substrate. P. Soc. Exp. Biol. Med. 157: 33-35 (1978)
  29. Mohandas J, Marshall JJ, Duggin GG, Horvath JS, Tiller DJ. Diferential distribution of glutathioneelated enzymes in rabbit kidney. Possible implications in analgesic nephropathy. Biochem. Pharmacol. 33: 1801-1807 (1984) https://doi.org/10.1016/0006-2952(84)90353-8
  30. Buege JA, Aust SD. Microsomal lipid peroxidation. Method Enzymol. 52: 302-310 (1978) https://doi.org/10.1016/S0076-6879(78)52032-6
  31. Bergmeyer HU, Bernt E. Lactate dehydrogenase. pp. 574-579. In:Methods of Enzymatic Analysis. Bergmeyer HU (ed). 2$^{nd}$ ed, Academic Press, New York, NY, USA (1974)
  32. Wang H, Joseph JA. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radical Bio. Med. 27: 612-616 (1999) https://doi.org/10.1016/S0891-5849(99)00107-0
  33. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishok JS. Tannenbaum SR. Analysis of nitrate, and [15N] nitratein biologicalfluds. Anal. Biochem. 126: 131-138 (1982) https://doi.org/10.1016/0003-2697(82)90118-X
  34. Deryckere F, Gannon F. A one-hour minipreparation technique for extraction of DNA-binding proteins from animal tissues. Biotechniques 16: 405 (1994)
  35. Ho YS, Crapo JD. Isolation and characterization of complementary DNAs encoding human manganese-containing superoxide dismutase. FEBS Lett. 229: 256-260 (1988) https://doi.org/10.1016/0014-5793(88)81136-0
  36. Jones DP, Eklow L, Thor H, Orrenius S. Metabolism of hydrogen peroside in isolated hepatocytes: Relative contributions of catalase and glutathione peroxidase in decomposition of endogenousily generated H2O2. Arch. Biochem. Biophys. 210: 505-516 (1981) https://doi.org/10.1016/0003-9861(81)90215-0
  37. Deisseroth A, Dounce AL. Catalase: Physical and chermical properties, mechanism of catalysis, and physiological role. Physiol. Rev. 50: 319-375 (1970)
  38. Thurman RG, Bradford B, Limuro Y, Keecht K, Conner HM, Adachi Y, Wall C, Arteel G, Releigh J, Forman D, Mason RF. Role of kupffer cells, endotoxin and free radicals in gepatotoxicity due to prolonged alchol consumption: studies in femake and malerats. J. Nutr. 127: 903s-906s (1977)
  39. Plaa GL, Witschi H. Chemicals, drugs and lipid per-oxidation. Am. Rev. Toxicol. Pharmacol. 16: 125-141 (1976) https://doi.org/10.1146/annurev.pa.16.040176.001013
  40. Nguyen T, Brunson D, Crespy CL, Penman BW, Wishnok JS, Tannenbaum SR. DNA damages and vutaion in human cells exposed to nitric oxide in vitro. Proc. Natl. Acad. Aci. USA 89:3030- 3034 (1992) https://doi.org/10.1073/pnas.89.7.3030
  41. Nichols TC, Ficher TH, Deliartyris EN, Baldwin AS Jr. Role of nuclear factor-kb (NF$\kappa$$\beta$) in inflammation, periodontitis, and atherogenesis. Ann. Periodontol. 6: 20-29 (2001) https://doi.org/10.1902/annals.2001.6.1.20
  42. Dint JL, Hsu JS, Wang MM, Txen JT. Purification and glycosylation analysis of an acidic pectin methylesterase in jelly fig(Ricus awkeotsang) achenes. J. Agr. Food Chem. 50: 2920-2925 (2002) https://doi.org/10.1021/jf010845+
  43. Kimura Y, Miyagi C, kimura M, Nitoda M, kawai N, Sugimoto H. structure features of N-glycans linked to royal jelly glycoprotein: Structure of high-mannose type, hybride type, and biantenary type glycans. Biosci. Biotech. Biochem. 64: 2109-2120 (2000) https://doi.org/10.1271/bbb.64.2109
  44. Hirsch Rl, Kellner A. The pathogenesis of hyperlipemia induced by means of surface-active agents. II. Failure of exchange of cholesterol between the plasma and the liver in rabbits given Triton WR 1339. J. Exp. Med. 104: 15-24 (1966)