DOI QR코드

DOI QR Code

MULTISCALE MODELING OF RADIATION EFFECTS ON MATERIALS: PRESSURE VESSEL EMBRITTLEMENT

  • Published : 2009.02.28

Abstract

Radiation effects on materials are inherently multiscale phenomena in view of the fact that various processes spanning a broad range of time and length scales are involved. A multiscale modeling approach to embrittlement of pressure vessel steels is presented here. The approach includes an investigation of the mechanisms of defect accumulation, microstructure evolution and the corresponding effects on mechanical properties. An understanding of these phenomena is required to predict the behavior of structural materials under irradiation. We used molecular dynamics (MD) simulations at an atomic scale to study the evolution of high-energy displacement cascade reactions. The MD simulations yield quantitative information on primary damage. Using a database of displacement cascades generated by the MD simulations, we can estimate the accumulation of defects over diffusional length and time scales by applying kinetic Monte Carlo simulations. The evolution of the local microstructure under irradiation is responsible for changes in the physical and mechanical properties of materials. Mechanical property changes in irradiated materials are modeled by dislocation dynamics simulations, which simulate a collective motion of dislocations that interact with the defects. In this paper, we present a multi scale modeling methodology that describes reactor pressure vessel embrittlement in a light water reactor environment.

Keywords

References

  1. G.R. Odette, B.D. Wirth, D.J. Bacon, and N.M. Ghoniem, “Multiscale-multiphysics modeling of radiation-damaged materials: Embrittlement of pressure-vessel steels,” MRS Bulletin/March, 176 (2001)
  2. B.D. Wirth, M.J. Caturla, T. Diaz de la Rubia, T. Khraishi, and H. Zbib, “Mechanical property degradation in irradiated materials: A multiscale modeling approach,” Nucl. Instr. and Meth. B, 180, 23 (2001) https://doi.org/10.1016/S0168-583X(01)00392-5
  3. B.D. Wirth, G.R Odette, J. Marian, L. Ventelon, J.A. Young- Vandersall, and L.A. Zepeda-Ruiz, “Multiscale modeling of radiation damage in the fusion environment,” J. Nucl. Mater., 329-333, 106 (2004) https://doi.org/10.1016/j.jnucmat.2004.04.156
  4. J .Kwon, G..-G.. Lee, and C. Shin, “Multiscale modeling approach to radiation effects on materials,” KNS and AESJ Joint Summer School 2007, Seoul, Korea, Aug.27-30, 2007
  5. L.R. Greenwood and R.K. Smither, “SPECTER: Neutron Damage Calculations for Materials Irradiations,” ANL/FPP/TM-197, Argonne National Laboratory (1985)
  6. M.W. Finnis, “MOLDY6-A molecular dynamics program for simulation of pure metal,” Harwell Report AERE R- 13182 (1988)
  7. M.W. Finnis and J.E. Sinclair, “A simple empirical N-body potential for transition metals,” Phil. Mag. A, 50, 45 (1984) https://doi.org/10.1080/01418618408244210
  8. R.E. Stoller and L.R. Greenwood, “Subcascade formation in displacement cascade simulations: Implication for fusion reactor materials,” J. Nucl. Mater., 271&272, 57 (1999) https://doi.org/10.1016/S0022-3115(98)00730-2
  9. M.J. Norgett, M.T. Robinson and I.M. Torrens, “A proposed method of calculating displacement dose rates,” Nucl. Eng. Design, 33, 50 (1975) https://doi.org/10.1016/0029-5493(75)90035-7
  10. A.F. Voter, “Introduction to the kinetic Monte Carlo method,” in: K.E. Sickafus and E.A. Kotomin, Radiation Effects in Solids, p. 1, Springer, Dordrecht (2005)
  11. C. Domain, C.S. Becquart, and L. Malerba, “Simulation of radiation damage in Fe Alloys: an object kinetic Monte Carlo approach,” J. Nucl. Mater., 335, 121 (2004) https://doi.org/10.1016/j.jnucmat.2004.07.037
  12. N. Soneda and T. Diaz De La Rubia, “Defect production, annealing kinetics and damage evolution in -Fe: an atomicscale computer simulation,” Phil. Mag. A, 78, 995 (1998) https://doi.org/10.1080/01418619808239970
  13. M.J. Caturla, N. Soneda, E. Alonso, B.D. Wirth, T. Diaz de la Rubia, and J.M. Perlado, “Comparative study of radiation damage accumulation in Cu and Fe,” J. Nucl. Mater., 276, 13 (2000) https://doi.org/10.1016/S0022-3115(99)00220-2
  14. N. Soneda, S. Ishino, A. Takahashi, and K. Dohi, “Modeling the microstructural evolution in bcc-Fe during irradiation using kinetic Monte Carlo computer simulation,” J. Nucl. Mater., 323, 169 (2003) https://doi.org/10.1016/j.jnucmat.2003.08.021
  15. J.P. Hirth and J. Lothe, Theory of Dislocations, Krieger Publishing Company, Malabar, Florida, 1992
  16. C. Shin, H.-H. Jin, J. Kwon, J.-H. Shim and T.S. Byun, 'Mechanism for unfaulting of an extrinsic Frank loop with <112> edges by glide dislocations,' J. Kor. Phys. Soc., 52, 1250 (2008) https://doi.org/10.3938/jkps.52.1250
  17. C. Shin, J. Kwon and W.W. Kim, “Prediction of radiation-induced yield stress increment in austenitic stainless steels by using a computational approach,” J. Nucl. Mater., in press, http://dx.doi.org/10.1016/j.jnucmat.2008.12.189
  18. C. Shin, M.C. Fivel, M. Verdier, S.C. Kwon, “Numerical methods to improve the computing efficiency of discrete dislocation dynamics simulations,” J. Comp. Phys., 215, 417 (2006) https://doi.org/10.1016/j.jcp.2005.10.025
  19. R. de Wit, “Some relations for straight dislocations,” Phys. Stat. Sol., 20, 567 (1967) https://doi.org/10.1002/pssb.19670200217
  20. B. Devincre, “Three dimensional stress field expressions for straight dislocation segments”, Solid State Commun., 93, 875 (1995) https://doi.org/10.1016/0038-1098(94)00894-9
  21. C. Domain and G. Monnet, “Simulation of screw dislocation motion in iron by molecular dynamics simulations,” Phys. Rev. Lett., 95, 215506 (2005) https://doi.org/10.1103/PhysRevLett.95.215506
  22. J. Marian, W. Cai and V.V. Bulatov, “Dynamic transitions from smooth to rough to twinning in dislocation motion,” Nature Mater., 3, 158 (2004) https://doi.org/10.1038/nmat1072
  23. F. Louchet and L.P. Kubin, “Dislocation substructures in the anomalous slip plane of single crystal niobium strained at 50 K,” Acta Metall., 23, 17 (1975) https://doi.org/10.1016/0001-6160(75)90064-4
  24. D. R. Trinkle and C. Woodward, “The chemistry of deformation: How solutes soften pure metals,” Science 310, 1665 (2005) https://doi.org/10.1126/science.1118616
  25. C. Shin, H.H. Jin, unpublished work
  26. Y.N. Osetsky, D. Rodney and D.J. Bacon, “Atomic-scale study of dislocation-stacking fault tetrahedron interactions. Part I: Mechanisms,” Phil. Mag., 86, 2295 (2006) https://doi.org/10.1080/14786430500513783

Cited by

  1. High Temperature Storage and Gamma Radiation Effects on Mechanical Properties of Stacked Die Package vol.895, pp.1662-8985, 2014, https://doi.org/10.4028/www.scientific.net/AMR.895.567