Antibacterial and Synergistic Activity of Isocryptomerin Isolated from Selaginella tamariscina

  • Lee, June-Young (School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University) ;
  • Choi, Yun-Jung (School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University) ;
  • Woo, Eun-Rhan (College of Pharmacy, Chosun University) ;
  • Lee, Dong-Gun (School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University)
  • Published : 2009.02.28

Abstract

We investigated novel antibacterial and synergistic activities of isocryptomerin isolated from Selaginella tamariscina. Isocryptomerin showed potent antibacterial activity against Gram-positive and Gram-negative bacterial strains including clinical isolates of antibiotic-resistant species such as methicillin-resistant Staphylococcus aureus(MRSA). Additionally, we further investigated the synergistic activity of isocryptomerin with a conventional antibiotic against MRSA. The result indicated that isocryptomerin had considerable synergistic activity in combination with cefotaxime. In summary, the present study suggests that isocryptomerin may have potential as a novel therapeutic agent for treatment of infectious diseases by not only human pathogenic bacteria but also multidrug-resistant bacteria.

Keywords

References

  1. Bauer, R. and L. M. Dicks. 2005. Mode of action of lipid IItargeting lantibiotics. Int. J. Food Microbiol. 101: 201-216 https://doi.org/10.1016/j.ijfoodmicro.2004.11.007
  2. Bush, K. 2004. Antibacterial drug discovery in the 21st century. Clin. Microbiol. Infect. 10 Suppl 4: 10-17 https://doi.org/10.1111/j.1465-0691.2004.1005.x
  3. Cassell, G. H. 1997. Emergent antibiotic resistance: Health risks and economic impact. FEMS Immunol. Med. Microbiol. 18: 271- 274 https://doi.org/10.1111/j.1574-695X.1997.tb01055.x
  4. Cavalieri, S. J., J. R. Biehle, and W. E. Sanders Jr. 1995. Synergistic activities of clarithromycin and antituberculous drugs against multidrug-resistant Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 39: 1542-1545
  5. Cha, D. S. and M. S. Chinnan. 2004. Biopolymer-based antimicrobial packaging: A review. Crit. Rev. Food Sci. Nutr. 44: 223-237 https://doi.org/10.1080/10408690490464276
  6. Cha, H. Y., D. C. Moon, C. H. Choi, J. Y. Oh, Y. S. Jeong, Y. C. Lee, et al. 2005. Prevalence of the ST239 clone of methicillin-resistant Staphylococcus aureus and differences in antimicrobial susceptibilities of ST239 and ST5 clones identified in a Korean hospital. J. Clin. Microbiol. 43: 3610-3614 https://doi.org/10.1128/JCM.43.8.3610-3614.2005
  7. Clinical and Laboratory Standards Institute. 2005. Performance Standards for Antimicrobial Susceptibility Testing. Fifteenth Informational Supplement, Approved standard MS 100-S15. CLSI, Wayne, PA
  8. Cookson, B. 2005. Clinical significance of emergence of bacterial antimicrobial resistance in the hospital environment. J. Appl. Microbiol. 99: 989-996 https://doi.org/10.1111/j.1365-2672.2005.02693.x
  9. Hemaiswarya, S., A. K. Kruthiventi, and M. Doble. 2008. Synergism between natural products and antibiotics against infectious diseases. Phytomedicine 15: 639-652 https://doi.org/10.1016/j.phymed.2008.06.008
  10. Howard, D. H., R. D. Scott, R. Packard, and D. Jones. 2003. The global impact of drug resistance. Clin. Infect. Dis. 36 (Suppl 1): S4-S10 https://doi.org/10.1086/344656
  11. Jung, H. J. and D. G. Lee. 2008. Synergistic antibacterial effect between silybin and N,N'-dicyclohexylcarbodiimide in clinical Pseudomonas aeruginosa isolates. J. Microbiol. 46: 462-467 https://doi.org/10.1007/s12275-008-0138-7
  12. Jung, H. J., K.-S. Jeong, and D. G. Lee. 2008. Effective antibacterial action of Tat (47-58) by increased uptake into bacterial cells in the presence of trypsin. J. Microbiol. Biotechnol. 18: 990-996
  13. Kim, H. P., H. Park, K. H. Son, H. W. Chang, and S. S. Kang. 2008. Biochemical pharmacology of biflavonoids: Implications for anti-inflammatory action. Arch. Pharm. Res. 31: 265-273 https://doi.org/10.1007/s12272-001-1151-3
  14. Kuzin, A. P., H. Liu, J. A. Kelly, and J. R. Knox. 1995. Binding of cephalothin and cefotaxime to D-ala-D-ala-peptidase reveals a functional basis of a natural mutation in a low-affinity penicillinbinding protein and in extended-spectrum beta-lactamases. Biochemistry 34: 9532-9540 https://doi.org/10.1021/bi00029a030
  15. Lee, C. W., H. J. Choi, H. S. Kim, D. H. Kim, I. S. Chang, H. T. Moon, S. Y. Lee, W. K. Oh, and E. R. Woo. 2008. Biflavonoids isolated from Selaginella tamariscina regulate the expression of matrix metalloproteinase in human skin fibroblasts. Bioorg. Med. Chem. 16: 732-738 https://doi.org/10.1016/j.bmc.2007.10.036
  16. Lee, J. H., H. Y. Yang, H. S. Lee, and S. K. Hong. 2008. Chemical composition and antimicrobial activity of essential oil from cones of Pinus koraiensis. J. Microbiol. Biotechnol. 18: 497-502
  17. Lee, S. J., J. H. Choi, K. H. Son, H. W. Chang, S. S. Kang, and H. P. Kim. 1995. Suppression of mouse lymphocyte proliferation in vitro by naturally-occurring biflavonoids. Life Sci. 57: 551-558 https://doi.org/10.1016/0024-3205(95)00305-P
  18. MacKenzie, F. M., M. J. Struelens, K. J. Towner, and I. M. Gould. 2005. Report of the Consensus Conference on Antibiotic Resistance; Prevention and Control (ARPAC). Clin. Microbiol. Infect. 11: 938-954 https://doi.org/10.1111/j.1469-0691.2005.01258.x
  19. Park, K. H., J. S. Kim, Y. R. Lee, Y. J. Moon, H. Hur, Y. H. Choi, et al. 2007. Low-density lipoprotein protects Vibrio vulnificus-induced lethality through blocking lipopolysaccharide action. Exp. Mol. Med. 39: 673-678 https://doi.org/10.1038/emm.2007.73
  20. Paterson, D. L. 2006. The epidemiological profile of infections with multidrug-resistant Pseudomonas aeruginosa and Acinetobacter species. Clin. Infect. Dis. 43(Suppl 2): S43-S48 https://doi.org/10.1086/504476
  21. Rice, L. B. 2006. Antimicrobial resistance in Gram-positive bacteria. Am. J. Infect. Control 34(5 Suppl 1): S11-S19 https://doi.org/10.1016/j.ajic.2006.05.220
  22. Roos, K. L. 2004. Emerging antimicrobial-resistant infections. Arch. Neurol. 61: 1512-1514 https://doi.org/10.1001/archneur.61.10.1512
  23. Silva, G. L., H. Chai, M. P. Gupta, N. R. Farnsworth, G. A. Cordell, J. M. Pezzuto, C. W. Beecher, and A. D. Kinghorn. 1995. Cytotoxic biflavonoids from Selaginella willdenowii. Phytochemistry 40: 129-134 https://doi.org/10.1016/0031-9422(95)00212-P
  24. Sung, W. S., H. J. Jung, I.-S. Lee, H. S. Kim, and D. G. Lee. 2006. Antimicrobial effect of furaneol against human pathogenic bacteria and fungi. J. Microbiol. Biotechnol. 16: 349-354
  25. Weber, J. T. and P. Courvalin. 2005. An emptying quiver: Antimicrobial drugs and resistance. Emerg. Infect. Dis. 11: 791-793
  26. White, D. G., S. Zhao, S. Simjee, D. D. Wagner, and P. F. McDermott. 2002. Antimicrobial resistance of foodborne pathogens. Microbes Infect. 4: 405-412 https://doi.org/10.1016/S1286-4579(02)01554-X