Effects of a Compound Extract from Agrimonia pilosa Ledeb, Grifola umbellata (pers.) Pilat, and Gambogia on Human Gastric Carcinoma MGC-803 Cells

  • Zhao, Li (Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University) ;
  • Zhang, Xiao-Nan (Department of Pharmacology, the Fourth Military Medical University) ;
  • Gu, Hong-Yan (Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University) ;
  • Wang, Jia (Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University) ;
  • Tao, Lei (Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University) ;
  • Mu, Rong (Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University) ;
  • Guo, Qing-Long (Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University)
  • Published : 2009.02.28

Abstract

Three traditional Chinese medicines, Agrimonia pilosa Ledeb, Grifola umbellata (pers.) Pilat, and Gambogia, are combined to form a compound extract, AGC. In this study, the in vitro and in vivo inhibitory effects of AGC on human gastric carcinoma MGC-803 cells were demonstrated, and the molecular mechanisms underlying these effects are investigated. Our results indicate that AGC inhibited MGC-803 cell growth in a dose-dependent manner as measured by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, with an $IC_{50}$ of about $6.045{\pm}0.69{\mu}g/mL$. In vivo, AGC inhibited growth of human gastric carcinoma in xenograft tumors in nude mice, and the inhibitory rate reached 55.2% at 300 mg/kg. The pro-apoptotic activity of AGC was attributed to its ability to decrease the expression of Bcl-2 and Pro-caspase3 and increase the expression of Bax. These results demonstrate that AGC can effectively induce programmed cell death and may be a promising anti-tumor drug in human gastric carcinoma.

Keywords

References

  1. Wang SGLY, Wang RN, Feng L Effect of Herba agrimoniae Granule on blood glucose level of mice. J. Fourth Milit. Med. Univ. China. 20: 640-642 (1999)
  2. Cao YLY Study of Agrimonia pilosa Ledeb on IL-2 of tumor bearig mice. Chinese J. Traditional Med. Sci. Technol. 6: 242 (1999)
  3. Murayama T, Kishi N, Koshiura R, Takagi K, Furukawa T, Miyamoto K. Agrimoniin, an antitumor tannin of Agrimonia pilosa Ledeb., induces interleukin-1. Anticancer Res, 12:1471-1474 (1992)
  4. Wang DCGY, Zhu YY, Li J, Xu XM. Effect of extractives of xianhecao on the blood pressure in rabbits. Chinese J. Inform. Trad. Chinese Med. 10: 21-24 (2003)
  5. Tian Y, Li CP. Anti-mite activities of 25 kinds of traditional Chinese medicines for Demodex folliculorum. J, Chinese Med. Material 29:1013-1015 (2006)
  6. Wang SGLY, Wang RN, Feng L Effect of Agrimonia pilosa Ledeb on nude mice bearing human cancerous xenograft. J. Fourth Milit. Med. Univ. China. 19: 702-704 (1998)
  7. Miyamoto K, Kishi N, Murayama T, Furukawa T, Koshiura R. Induction of cytotoxicity of peritoneal exudate cells by agrimoniin, a novel immunomodulatory tannin of Agrimonia pilosa Ledeb. Cancer Immunol. Immun. 27: 59-62 (1988) https://doi.org/10.1007/BF00205759
  8. Miyamoto K, Kishi N, Koshiura R. Antitumor effect of agrimoniin, a tannin of Agrimonia pilosa Ledeb., on transplantable rodent tumors. Jpn. J. Pharmacol. 43: 187-195 (1987) https://doi.org/10.1254/jjp.43.187
  9. Koshiura R, Miyamoto K, Ikeya Y, Taguchi H. Antitumor activity of methanol extract from roots of Agrimonia pilosa Ledeb. Jpn. J, Pharmacol. 38: 9-16 (1985) https://doi.org/10.1254/jjp.38.9
  10. Gao K, Zhou L, Chen J, Li F, Zhang L. Experimental study on decoctum Agrimonia pilosa Ledeb-induced apoptosis in HL-60 cells in vitro. J. Chinese Med. Material 23: 561-562 (2000)
  11. Ohsawa T, Yukawa M, Takao C, Murayama M, Bando H. Studies on constituents of fruit body of Polyporus umbellatus and their cytotoxic activity. Chem. Pharm. Bull. 40: 143-147 (1992) https://doi.org/10.1248/cpb.40.143
  12. Sekiya N, Hikiami H, Nakai Y, Sakakibara I, Nozaki K, Kouta K, Shimada Y, Terasawa K. Inhibitory effects of triterpenes isolated from chuling (Polyporus umbellatus Fries) on free radical-induced lysis of red blood cells. BioI. Pharm. Bull. 28: 817-821 (2005) https://doi.org/10.1248/bpb.28.817
  13. Xiaoke X, Shunxing G. Morphological characteristics of sclerotia formed from hyphae of Grifola umbellata under artificial conditions. Mycopathologia 159: 583-590 (2005) https://doi.org/10.1007/s11046-005-0255-3
  14. Miyazaki T, Oikawa N, Yamada H, Yadomae T. Structural examination of antitumour, water-soluble glucans from Grifora umbellata by use of four types of glucanase. Carbohyd. Res. 65: 235-243 (1978) https://doi.org/10.1016/S0008-6215(00)84315-3
  15. You JS, Hau DM, Chen KT, Huang HE Combined effects of chuting (Polyporus umbellatus) extract and mitomycin C on experimental liver cancer. Am. J. Chinese Med. 22: 19-28 (1994) https://doi.org/10.1142/S0192415X94000048
  16. Han QBSJ, Qiao CF, Xu HX. Characterization and quatitative analysis of xanthones in gamboges. Chininese J. Nat. Med. 4: 210-214 (2006)
  17. Lu Y, Wang G, Ye D. Comparison of cytotoxicity of different processed products of gamboge on K562 tumor cells. China J. Chinese Materia Med. 21: 90-91,127 (1996)
  18. Lu P, Zhang X, Yan H, Ye D. Influence of different processes on bactericidal and tumoricidal effects of gamboges. China J. Chinese Materia Med. 21: 280-281, 318 (1996)
  19. Lei QMLJ. Retrospect and prospect of anti-cancer efficancy of gramboge. China J. Cancer Prevo Treat. 10: 216-219 (2003)
  20. Zhao L, Guo QL, You QD, Wu ZQ, Gu HY Gambogic acid induces apoptosis and regulates expressions of Bax and Bcl-2 protein in human gastric carcinoma MGC-803 cells. BioI. Pharm. Bull. 27:998-1003 (2004) https://doi.org/10.1248/bpb.27.998
  21. Yang Y, Yang L, You QD, Nie FF, Gu HY, Zhao L, Wang XT, Guo QL 1. Differential apoptotic induction of gambogic acid, a novel anticancer natural product, on hepatoma cells and normal hepatocytes. Cancer Lett. 256: 259-266 (2007) https://doi.org/10.1016/j.canlet.2007.06.014
  22. Hu Y, Yang Y, You QD, Liu W, Gu HY, Zhao L, Zhang K, Wang W, Wang XT, Guo QL 1. Oroxylin A induced apoptosis of human hepatocellular carcinoma cell line HepG2 was involved in its antitumor activity. Biochem. Bioph. Res. Co. 351: 521-527 (2006) https://doi.org/10.1016/j.bbrc.2006.10.064
  23. Tamm I, Schriever F, Dorken B. Apoptosis: Implications of basic research for clinical oncology. Lancet Oncol. 2: 33-42 (2001) https://doi.org/10.1016/S1470-2045(00)00193-5
  24. Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, Peng TI, Jones DP, Wang X. Prevention of apoptosis by Bcl-2: Release of cytochrome c from mitochondria blocked. Science 275: 1129-1132 (1997) https://doi.org/10.1126/science.275.5303.1129
  25. Ashe PC, Berry MD. Apoptotic signaling cascades. Prog. Neuro-Psychoph. 27: 199-214 (2003) https://doi.org/10.1016/S0278-5846(03)00016-2
  26. Mi SL, An CC, Wang Y, Chen JY, Che NY, Gao Y, Chen ZL 1. Trichomislin, a novel ribosome-inactivating protein, induces apoptosis that involves mitochondria and caspase-3. Arch. Biochem. Biophys. 434: 258-265 (2005) https://doi.org/10.1016/j.abb.2004.11.009
  27. Thornberry NA, Lazebnik Y. Caspases: Enemies within. Science 281: 1312-1316 (1998) https://doi.org/10.1126/science.281.5381.1312
  28. Zong WX, Lindsten T, Ross AJ, MacGregor GR, Thompson CB. BH3-only proteins that bind pro-survival Bcl-2 family members fail to induce apoptosis in the absence of Bax and Bak. Gene. Develop. 15: 1481-1486 (2001) https://doi.org/10.1101/gad.897601
  29. Shimizu S, Tsujimoto Y. Proapoptotic BH3-only Bcl-2 family members induce cytochrome c release, but not mitochondrial membrane potential loss, and do not directly modulate voltagedependent anion channel activity. P. Nat. Acad. Sci. USA 97:577-582 (2000) https://doi.org/10.1073/pnas.97.2.577