Antioxidative Effects of Delphinidin under in vitro and Cellular System

  • Noh, Jeong-Sook (Department of Food Science and Nutrition, Research Institute of Ecology for the Elderly, Pusan National University) ;
  • Cho, Yun-Ju (Department of Food Science and Nutrition, Research Institute of Ecology for the Elderly, Pusan National University) ;
  • Kim, Boh-Kyung (Department of Food Science and Nutrition, Research Institute of Ecology for the Elderly, Pusan National University) ;
  • Park, Kun-Young (Department of Food Science and Nutrition, Research Institute of Ecology for the Elderly, Pusan National University) ;
  • Cho, Eun-Ju (Department of Food Science and Nutrition, Research Institute of Ecology for the Elderly, Pusan National University)
  • Published : 2009.02.28

Abstract

This study examined the antioxidative activity of delphinidin, a kind of anthocyanidin from eggplant. Cellular protective potential from oxidative damage by nitric oxide (NO), superoxide anion ($O_2^-$), and peroxynitrite ($ONOO^-$) using epithelial cell line LLC-PK1 cell as well as in vitro radical scavenging effects were investigated. Delphinidin showed strong in vitro radical scavenging effects against NO, $O_2^-$, and hydroxyl radical (${\cdot}OH$) in dose-dependent manners. In addition, delphinidin increased cell viability in LLC-PK1 cells in a concentration-dependent manner when viability was reduced by $ONOO^-$-induced oxidative damage. To elucidate the protective mechanisms of delphinidin from $ONOO^-$, sodium nitroprusside (SNP), and pyrogallol were also employed to generate NO and $O_2^-$, respectively. The treatment of delphinidin recovered reductions in cell viability caused by SNP and pyrogallol, indicating that delphinidin can attenuate oxidative stress induced by NO and $O_2^-$. The present study suggests that delphinidin is a promising anti oxidative agent.

Keywords

References

  1. Valko M, Leibfritz D, Moncol J, Cronin MID, Mawur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell BioI. 39: 44-84 (2007) https://doi.org/10.1016/j.biocel.2006.07.001
  2. Yu BP, Chung HY. Oxidative stress and vascular aging. Diabetes Res. Clin. Pro 54: S73-S80 (2001) https://doi.org/10.1016/S0168-8227(01)00338-2
  3. Bokov A, Chaudhuri A, Richardson A. The role of oxidative damage and stress in aging. Mech. Ageing Dev. 125: 811-826 (2004) https://doi.org/10.1016/j.mad.2004.07.009
  4. Scott JA, King GL. Oxidative stress and antioxidant treatment in diabetes. Ann. NY Acad. Sci. 1031: 204-213 (2004) https://doi.org/10.1196/annals.1331.020
  5. Gibson GE, Huang HM. Oxidative stress in Alzheimer's disease. Neurobiol. Aging 26: 575-578 (2005) https://doi.org/10.1016/j.neurobiolaging.2004.07.017
  6. Meydani M, Lipman RD, Han SN, Wu D, Beharka A, Martin KR, Bronson R, Cao G, Smith D, Meydani SN. The effect of long-term dietary supplementation with antioxidants. Ann. NY Acad. Sci. 854:352-360 (1998) https://doi.org/10.1111/j.1749-6632.1998.tb09915.x
  7. Ames BN, Shigenaga MK, Hagen TM. Oxidants, antioxidants, and the degenerative diseases of aging. P. Natl. Acad. Sci. USA 90:7915-7922 (1993) https://doi.org/10.1073/pnas.90.17.7915
  8. Steinmetz KA, Potter JD. Vegetables, fruit, and cancer prevention. J. Am. Diet. Assoc. 96: 1027-1039 (1996) https://doi.org/10.1016/S0002-8223(96)00273-8
  9. Lee YA, Kim HY, Cho EJ. Comparison of methanol extracts from vegetables on antioxidative effect under in vitro and cell system. J. Food Sci. Nutr. 34: 1151-1156 (2005) https://doi.org/10.3746/jkfn.2005.34.8.1151
  10. Noda Y, Kneyuki T, Igarashi K, Mori A, Packer L. Antioxidant activity of nasunin, an anthocyanin in eggplant peels. Toxicology 148: 119-123 (2000) https://doi.org/10.1016/S0300-483X(00)00202-X
  11. Chang HJ, Choi EH, Chun HS. Quantitative structure-activity relationship (QSAR) of antioxidative anthocyanidins and their glycosides. Food Sci. Biotechnol. 17: 501-507 (2008)
  12. Kahkonen MP, Heinonen M. Antioxidant activity of anthocyanins and their aglycons. J. Agr. Food Chem. 51: 628-633 (2003) https://doi.org/10.1021/jf025551i
  13. Hou DX. Potential mechanisms of cancer chemoprevention by anthocyanins. Curr. Mol. Med. 3: 149-159 (2003) https://doi.org/10.2174/1566524033361555
  14. Sreejayan N, Rao MN. Nitric oxide scavenging by curcuminoids. J. Pharm. Pharmacol. 49: 105-107 (1997) https://doi.org/10.1111/j.2042-7158.1997.tb06761.x
  15. Ewing JF, Janero DR. Microplate superoxide dismutase assay employing a nonenzymatic superoxide generator. Anal. Biochem. 232: 243-248 (1995) https://doi.org/10.1006/abio.1995.0014
  16. Gutteridge JM. Ferrous-salt-promoted damage to deoxyribose and benzoate. The increased effectiveness of hydroxyl-radical scavengers in the presence of EDTA. Biochem. J. 243: 709-714 (1987) https://doi.org/10.1042/bj2430709
  17. Yokozawa T, Ishida A, Kashiwada Y, Cho EJ, Kim HY, Ikeshiro Y. Coptidis Rhizoma: Protective effects against peroxynitrite-induced oxidative damage and elucidation of its active components. J. Pharm. Pharmacol. 56: 547-556 (2004) https://doi.org/10.1211/0022357023024
  18. Yokozawa T, Cho EJ, Nakagawa T, Terasawa K, Takeuchi S. Inhibitory effect of green tea tannin on free radical-induced injury to the renal epithelial cell line, LLC-PKI. Pharm. Pharmacol. Commun. 6: 521-526 (2006)
  19. Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 65: 55-63 (1993) https://doi.org/10.1016/0022-1759(83)90303-4
  20. Rice-Evans CA, Miller NJ, Bolwell PG, Bramley PM, Pridham JB. The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radical Res. 22: 375-383 (1995) https://doi.org/10.3109/10715769509145649
  21. Azevedo L, Alves de Lima PL, Gomes JC, Stringheta PC, Ribeiro DA, Salvadori DMF. Differential response related to genotoxicity between eggplant (Solanum melanogena) skin aqueous extract and its main purified anthocyanin (delphinidin) in vivo. Food Chem. Toxicol. 45: 852-858 (2007) https://doi.org/10.1016/j.fct.2006.11.004
  22. Darley-Usmar V, Wiseman H, Halliwell B. Nitric oxide and oxygen radicals: A question of balance. FEBS Lett. 369: 131-135 (1995) https://doi.org/10.1016/0014-5793(95)00764-Z
  23. Halliwell B. Oxidants and human disease: Some new concepts. FASEB J. 1: 358-364 (1987) https://doi.org/10.1096/fasebj.1.5.2824268
  24. Fukuyama N, Takebayashi Y, Hida M, Ishida H, Ichimori K, Nakazawa H. Clinical evidence of peroxynitrite formation in chronic renal failure patients with septic shock. Free Radical Bio. Med. 22: 771-774 (1997) https://doi.org/10.1016/S0891-5849(96)00401-7
  25. Ischiropoulos H. Biological tyrosine nitration: A pathophysiological function of nitric oxide and reactive oxygen species. Arch. Biochem. Biophys. 356: 1-11 (1998) https://doi.org/10.1006/abbi.1998.0755
  26. Nakazawa H, Fukuyama N, Takizawa S, Tsuji C, Yoshitake M, Ishida H. Nitrotyrosine formation and its role in various pathological conditions. Free Radical Res. 33: 771-784 (2000) https://doi.org/10.1080/10715760000301291
  27. Schena FP, Grandaliano G, Gesualdo L. The role of tubular cells in the progression of renal damage: Guilty or innocent? Renal Failure 23: 589-596 (2001) https://doi.org/10.1081/JDI-100104740
  28. Lipton SA, Choi YB, Pan ZH, Lei SZ, Chen HSV, Sucher NJ, Loscalzo J, Singel DJ, Stamler JS. A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and relateed nitroso-compounds. Nature 364: 626-632 (1993) https://doi.org/10.1038/364626a0
  29. Zhu L, Gunn C, Beckman JS. Bactericidal activity of peroxynitrite. Arch. Biochem. Biophys. 298: 452-457 (1992) https://doi.org/10.1016/0003-9861(92)90434-X
  30. Patel RP, McAndrew J, Sellak H, White CR, Jo H, Freeman BA, Darley-Usmar VM. Biological aspects of reactive nitrogen species. Biochim. Biophys. Acta 1411: 385-400 (1999) https://doi.org/10.1016/S0005-2728(99)00028-6
  31. Sandoval M, Zhang XJ, Liu X, Mannick EE, Clark DA, Miller MJ. Peroxynitrite-induced apoptosis in T84 and RAW 264.7 cells:Attenuation by L-ascorbic acid. Free Radical Bio. Med. 22: 489-495 (1997) https://doi.org/10.1016/S0891-5849(96)00374-7
  32. Doulias PT, Barbouti A, Galaris D, Ischiropoulos H. SIN-1-induced DNA damage in isolated human peripheral blood lymphocytes as assessed by single cell gel electrophoresis (comet assay). Free Radical Bio. Med. 30: 679-685 (2001) https://doi.org/10.1016/S0891-5849(00)00511-6
  33. Rahman MM, Ichiyanagi T, Komiyama T, Hatano Y, Konishi T. Superoxide radical- and peroxynitrite scavenging activity of anthocyanins; structure-activity relationship and their synergism. Free Radical Res. 40: 993-1002 (2006) https://doi.org/10.1080/10715760600815322
  34. Rice-Evans CA, Miller NJ, Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Bio. Med. 20: 933-956 (1996) https://doi.org/10.1016/0891-5849(95)02227-9
  35. Wang H, Cao G, Prior RL. Oxygen radical absorbing capacity of anthocyanins. J. Agr. Food Chem. 45: 304-309 (1997) https://doi.org/10.1021/jf960421t