References
- Valko M, Leibfritz D, Moncol J, Cronin MID, Mawur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell BioI. 39: 44-84 (2007) https://doi.org/10.1016/j.biocel.2006.07.001
- Yu BP, Chung HY. Oxidative stress and vascular aging. Diabetes Res. Clin. Pro 54: S73-S80 (2001) https://doi.org/10.1016/S0168-8227(01)00338-2
- Bokov A, Chaudhuri A, Richardson A. The role of oxidative damage and stress in aging. Mech. Ageing Dev. 125: 811-826 (2004) https://doi.org/10.1016/j.mad.2004.07.009
- Scott JA, King GL. Oxidative stress and antioxidant treatment in diabetes. Ann. NY Acad. Sci. 1031: 204-213 (2004) https://doi.org/10.1196/annals.1331.020
- Gibson GE, Huang HM. Oxidative stress in Alzheimer's disease. Neurobiol. Aging 26: 575-578 (2005) https://doi.org/10.1016/j.neurobiolaging.2004.07.017
- Meydani M, Lipman RD, Han SN, Wu D, Beharka A, Martin KR, Bronson R, Cao G, Smith D, Meydani SN. The effect of long-term dietary supplementation with antioxidants. Ann. NY Acad. Sci. 854:352-360 (1998) https://doi.org/10.1111/j.1749-6632.1998.tb09915.x
- Ames BN, Shigenaga MK, Hagen TM. Oxidants, antioxidants, and the degenerative diseases of aging. P. Natl. Acad. Sci. USA 90:7915-7922 (1993) https://doi.org/10.1073/pnas.90.17.7915
- Steinmetz KA, Potter JD. Vegetables, fruit, and cancer prevention. J. Am. Diet. Assoc. 96: 1027-1039 (1996) https://doi.org/10.1016/S0002-8223(96)00273-8
- Lee YA, Kim HY, Cho EJ. Comparison of methanol extracts from vegetables on antioxidative effect under in vitro and cell system. J. Food Sci. Nutr. 34: 1151-1156 (2005) https://doi.org/10.3746/jkfn.2005.34.8.1151
- Noda Y, Kneyuki T, Igarashi K, Mori A, Packer L. Antioxidant activity of nasunin, an anthocyanin in eggplant peels. Toxicology 148: 119-123 (2000) https://doi.org/10.1016/S0300-483X(00)00202-X
- Chang HJ, Choi EH, Chun HS. Quantitative structure-activity relationship (QSAR) of antioxidative anthocyanidins and their glycosides. Food Sci. Biotechnol. 17: 501-507 (2008)
- Kahkonen MP, Heinonen M. Antioxidant activity of anthocyanins and their aglycons. J. Agr. Food Chem. 51: 628-633 (2003) https://doi.org/10.1021/jf025551i
- Hou DX. Potential mechanisms of cancer chemoprevention by anthocyanins. Curr. Mol. Med. 3: 149-159 (2003) https://doi.org/10.2174/1566524033361555
- Sreejayan N, Rao MN. Nitric oxide scavenging by curcuminoids. J. Pharm. Pharmacol. 49: 105-107 (1997) https://doi.org/10.1111/j.2042-7158.1997.tb06761.x
- Ewing JF, Janero DR. Microplate superoxide dismutase assay employing a nonenzymatic superoxide generator. Anal. Biochem. 232: 243-248 (1995) https://doi.org/10.1006/abio.1995.0014
- Gutteridge JM. Ferrous-salt-promoted damage to deoxyribose and benzoate. The increased effectiveness of hydroxyl-radical scavengers in the presence of EDTA. Biochem. J. 243: 709-714 (1987) https://doi.org/10.1042/bj2430709
- Yokozawa T, Ishida A, Kashiwada Y, Cho EJ, Kim HY, Ikeshiro Y. Coptidis Rhizoma: Protective effects against peroxynitrite-induced oxidative damage and elucidation of its active components. J. Pharm. Pharmacol. 56: 547-556 (2004) https://doi.org/10.1211/0022357023024
- Yokozawa T, Cho EJ, Nakagawa T, Terasawa K, Takeuchi S. Inhibitory effect of green tea tannin on free radical-induced injury to the renal epithelial cell line, LLC-PKI. Pharm. Pharmacol. Commun. 6: 521-526 (2006)
- Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 65: 55-63 (1993) https://doi.org/10.1016/0022-1759(83)90303-4
- Rice-Evans CA, Miller NJ, Bolwell PG, Bramley PM, Pridham JB. The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radical Res. 22: 375-383 (1995) https://doi.org/10.3109/10715769509145649
- Azevedo L, Alves de Lima PL, Gomes JC, Stringheta PC, Ribeiro DA, Salvadori DMF. Differential response related to genotoxicity between eggplant (Solanum melanogena) skin aqueous extract and its main purified anthocyanin (delphinidin) in vivo. Food Chem. Toxicol. 45: 852-858 (2007) https://doi.org/10.1016/j.fct.2006.11.004
- Darley-Usmar V, Wiseman H, Halliwell B. Nitric oxide and oxygen radicals: A question of balance. FEBS Lett. 369: 131-135 (1995) https://doi.org/10.1016/0014-5793(95)00764-Z
- Halliwell B. Oxidants and human disease: Some new concepts. FASEB J. 1: 358-364 (1987) https://doi.org/10.1096/fasebj.1.5.2824268
- Fukuyama N, Takebayashi Y, Hida M, Ishida H, Ichimori K, Nakazawa H. Clinical evidence of peroxynitrite formation in chronic renal failure patients with septic shock. Free Radical Bio. Med. 22: 771-774 (1997) https://doi.org/10.1016/S0891-5849(96)00401-7
- Ischiropoulos H. Biological tyrosine nitration: A pathophysiological function of nitric oxide and reactive oxygen species. Arch. Biochem. Biophys. 356: 1-11 (1998) https://doi.org/10.1006/abbi.1998.0755
- Nakazawa H, Fukuyama N, Takizawa S, Tsuji C, Yoshitake M, Ishida H. Nitrotyrosine formation and its role in various pathological conditions. Free Radical Res. 33: 771-784 (2000) https://doi.org/10.1080/10715760000301291
- Schena FP, Grandaliano G, Gesualdo L. The role of tubular cells in the progression of renal damage: Guilty or innocent? Renal Failure 23: 589-596 (2001) https://doi.org/10.1081/JDI-100104740
- Lipton SA, Choi YB, Pan ZH, Lei SZ, Chen HSV, Sucher NJ, Loscalzo J, Singel DJ, Stamler JS. A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and relateed nitroso-compounds. Nature 364: 626-632 (1993) https://doi.org/10.1038/364626a0
- Zhu L, Gunn C, Beckman JS. Bactericidal activity of peroxynitrite. Arch. Biochem. Biophys. 298: 452-457 (1992) https://doi.org/10.1016/0003-9861(92)90434-X
- Patel RP, McAndrew J, Sellak H, White CR, Jo H, Freeman BA, Darley-Usmar VM. Biological aspects of reactive nitrogen species. Biochim. Biophys. Acta 1411: 385-400 (1999) https://doi.org/10.1016/S0005-2728(99)00028-6
- Sandoval M, Zhang XJ, Liu X, Mannick EE, Clark DA, Miller MJ. Peroxynitrite-induced apoptosis in T84 and RAW 264.7 cells:Attenuation by L-ascorbic acid. Free Radical Bio. Med. 22: 489-495 (1997) https://doi.org/10.1016/S0891-5849(96)00374-7
- Doulias PT, Barbouti A, Galaris D, Ischiropoulos H. SIN-1-induced DNA damage in isolated human peripheral blood lymphocytes as assessed by single cell gel electrophoresis (comet assay). Free Radical Bio. Med. 30: 679-685 (2001) https://doi.org/10.1016/S0891-5849(00)00511-6
- Rahman MM, Ichiyanagi T, Komiyama T, Hatano Y, Konishi T. Superoxide radical- and peroxynitrite scavenging activity of anthocyanins; structure-activity relationship and their synergism. Free Radical Res. 40: 993-1002 (2006) https://doi.org/10.1080/10715760600815322
- Rice-Evans CA, Miller NJ, Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Bio. Med. 20: 933-956 (1996) https://doi.org/10.1016/0891-5849(95)02227-9
- Wang H, Cao G, Prior RL. Oxygen radical absorbing capacity of anthocyanins. J. Agr. Food Chem. 45: 304-309 (1997) https://doi.org/10.1021/jf960421t