DOI QR코드

DOI QR Code

Molecular Analysis of Botrytis cinerea Causing Ginseng Grey Mold Resistant to Carbendazim and the Mixture of Carbendazin Plus Diethofencarb

  • Kim, Joo-Hyung (Department of Plant Medicine, Chungbuk National University) ;
  • Min, Ji-Young (Department of Plant Medicine, Chungbuk National University) ;
  • Bae, Young-Seok (Ginseng Research Division, Ginseng and Medical Plants Research Institute, RDA) ;
  • Kim, Heung-Tae (Department of Plant Medicine, Chungbuk National University)
  • Published : 2009.12.01

Abstract

A total of 23 isolates of Botrytis cinerea causing the grey mold were collected from infected ginseng in several fields of Korea. The sensitivity to carbendazim and the mixture of carbendazim plus diethofencarb was determined through a mycelial inhibition test on PDA amended with or without fungicides. B. cinerea isolates were classified as 3 phenotypes, which were the first phenotype resistant to both of carbendazim and the mixture ($Car^RMix^R$), the second one resistant to carbendazim and sensitive to the mixture ($Car^RMix^S$), and the last one sensitive to both of them ($Car^RMix^S$). Carbendazim resistance correlated with a single mutation $\beta$-tubulin gene of B. cinerea amplified with primer pair tubkjhL and tubkjhR causing a change of glutamate to alanine at amino acid position 198. Furthermore, the substitution of valine for glutamate led the resistance to carbendazim and the mixture at the same position of amino acid. PCR-restriction fragment length polymorphism (PCR-RFLP) analysis using the restriction endonuclease, Tsp451 and BstUI allowed differentiation of the PCR fragment of $\beta$-tubulin gene of $Car^SMix^S$ isolates from that of $Car^RMix^R$ and $Car^RMix^S$ isolates. This method will aid in a fast detection of resistance of carbendazim and the mixture of carbendazim plus diethofencarb in B. cinerea in ginseng field.

Keywords

References

  1. Albertini, C., Gredt, M. and Leroux, P. 1999. Mutations of the $\beta$- tubulin gene associated with different phenotypes ofbenzimidazole resistance in the cereal eyespot fungi Tapesia yallundae and Tapesia acuformis. Pesticide Biochem. Physiol. 64:17-31 https://doi.org/10.1006/pest.1999.2406
  2. Coles, G. C., Bauer, C., Borgsteede, F. H. M., Geerts, S., Klei, T. R., Taylor, M. A. and Waller, P. W. 1992. World association for the advancement of veterinary parasitology (WA.A.V.P.) methods for the detection of anthelmintic resistance in nematodes of veterinary importance. Vet. Parasitol. 44:35-44 https://doi.org/10.1016/0304-4017(92)90141-U
  3. Coles, G. C., Jackson, F., Pomroy, W. E., Prichard, R. K., von Sanson-Himmelstjerna, G, Silvestre, A., Yaylor, M. A. and Vercruysse, J. 2006. The detection of anthelmintic resistance in nematodes of veterinary importance. Vet. Parasitol. 136:167-185 https://doi.org/10.1016/j.vetpar.2005.11.019
  4. Davidse, L. C. 1986. Benzimidazole fungicides: mechanism of action and biological impact. Annu. Rev. Phytopathol. 24:43-65 https://doi.org/10.1146/annurev.py.24.090186.000355
  5. Elad, Y., Shabi, E. and Katan, T. 1988. Negative cross resistance between benzimidazole and N-phenylcarbamate fungicides and contol of Botrytis cinerea on grapes. Plant Pathol. 37:141-147 https://doi.org/10.1111/j.1365-3059.1988.tb02206.x
  6. Elard, L. and Humbert, J. F. 1999. Importance of the mutation of amino acid 200 of the isotype 1 beta tubulin gene in benzimidazole resistance of the small ruminant parasite Teladorsagia circumcincta. Parasitol. Res. 85:452-456 https://doi.org/10.1007/s004360050577
  7. Jung, M. K., Wilder, I. B. and Oakley, B. R. 1992. Amino acid alterations in the benA (a-tubulin) gene of Aspergillus nidulans that confer benomyl resistance. Cell Motil. Cytoskeleton 22:170-174 https://doi.org/10.1002/cm.970220304
  8. Katan, T., Elad, Y. and Yunis, H. 1989. Resistance to diethofen-carb (NPC) in benomyl-resistant field isolates of Botrytis cinerea. Plant Pathol. 38:86-92 https://doi.org/10.1111/j.1365-3059.1989.tb01431.x
  9. Kato, T., Suzuki, I., Takahashi, J. and Kamoshita, K. 1984. Negatively correlated cross-resistance between benzimidazole fungicides and methyl N-(3,4-dichloropheny) carbamate. J. Pesticide Sci. 9:489-495 https://doi.org/10.1584/jpestics.9.489
  10. Kim, J., Min, J., Baek, Y. S., Bae, Y-S. and Kim, H. T. 2007. Variation of the sensitivity of Botrytis cinerea causing ginseng grey mold to fungicides inhibiting $\beta$-tubulin assembly. Res. Plant Dis. 13:177-182 (in Korean) https://doi.org/10.5423/RPD.2007.13.3.177
  11. Kim, Y-S., Min J. Y., Kang B. K., Van Bach, N., Choi, W. B., Park, E. W. and Kim H. T. 2007. Analysis of the less benzimidazole-sensitivity of the isolates of Colletotrichum spp. causing the anthracnose in pepper and strawberry. Plant Pathol. J. 23:187-192 https://doi.org/10.5423/PPJ.2007.23.3.187
  12. LaMondia, J. A. and Douglas, S. M. 1997. Sensitivity of Botrytis cinerea from Connecticut greenhouses to benzimidazole and dicarboximide fungicides. Plant Dis. 81:729-732 https://doi.org/10.1094/PDIS.1997.81.7.729
  13. Lennox, C. L. and Spotts, R. A. 2003. Sensitivity of populations of Botrytis cinerea from pear-related sources to benzimidazole and dicarboximide fungicides. Plant Dis. 87:645-649 https://doi.org/10.1094/PDIS.2003.87.6.645
  14. Leroux, P., Chapeland, E, Desbrosses, D. and Gredt, M. 1999. Patterns of cross-resistance to fungicides in Botryotinia fuckeliana (Botrytis cinerea) isolates from French vineyards. Crop Prot. 18:687-697 https://doi.org/10.1016/S0261-2194(99)00074-5
  15. Leroux, P., Fritz, R., Debieu, D., Albertini, C., Lanen, C., Bach, J., Gredt, M. and Chapeland, F. 2002. Mechanisms of resitance to fungicides in field strains of Botrytis cinerea. Pest Manag. Sci. 58:876-888 https://doi.org/10.1002/ps.566
  16. Ma, Z., Felts, D. and Michailides, T. J. 2003. Resistance to azoxystrobin in Alternariaisolates from pistachio in California. Pesticide Biochem. Physiol. 77:66-74 https://doi.org/10.1016/j.pestbp.2003.08.002
  17. Ma, Z. and Michailides, T. J. 2005. Advances in understanding molecular mechanisms of fungicide resistance and molecular detection of resistant genotypes in phytopathogenic fungi. Crop Prot. 24:853-863 https://doi.org/10.1016/j.cropro.2005.01.011
  18. Ma, Z., Yoshimura, M. A., Holtz, B. A. and Michailides, T. J. 2005. Characterization and PCR-based detection of benzimidazole-resistant isolates of Monilinia laxa in California. Pest Manag. Sci. 61:449-457 https://doi.org/10.1002/ps.982
  19. McKay, G. J., Egan, D., Morris, E. and Brown, A. E. 1998. Identification of benzimidazole resistance in Cladobotryum dendroides using a PCR based method. Mycol. Res. 102:671-676 https://doi.org/10.1017/S095375629700542X
  20. Michailides, T. J., Morgan, D. P., Ma, Z., Luo, Y., Felts, D., Doster, M. A. and Reyes, H. 2005. Conventional and molecular assays aid diagnosis of crop diseases and fungicide resistance. California Agricul. 59:115-123 https://doi.org/10.3733/ca.v059n02p115
  21. Myresiotis, C. K., Karaoglanidis, G. S. and Tzavella-Klonari, K. 2007. Resistance of Botrytis cinerea isolates from vegetable crops to nilinopyrimidine, phenylpyrrole, hydroxyanilide, benzimidazole, and dicarboximide fungicides. Plant Dis. 91:407-413 https://doi.org/10.1094/PDIS-91-4-0407
  22. Oshima, M., Barmo, S., Okada, K., Takeuchi, T, Kimura, M., Ichiichi, A., Yamaguchi, I. and Fujimura, M. 2006. Survey of mutations of a histidine kinase gene BcOS1 in dicarboximide resistant field isolates of Botrytis cinerea. J. Gen. Plant Pathol. 72:65-73 https://doi.org/10.1007/s10327-005-0247-7
  23. Saito, S., Suzuki, S. and Takayanagi, T. 2009. Nested PCR-RFLP is a high-speed method to detect fungicide-resistant Botrytis cinerea at an early growth stage of grapes. Pest Manag. Sci. 65:197-204 https://doi.org/10.1002/ps.1668
  24. Yarden, O. and Katan, T. 1993. Mutations leading to substitutions at amino acids 198 and 200 ofbeta-tubulin that correlate with benomyl-resistance phenotypes of field strains of Botrytis cinerea. Phytopathology 83:1478-1483 https://doi.org/10.1094/Phyto-83-1478
  25. Yourman, L. F. and Jeffers, S. N. 1999. Resistance to benzimidazole and dicarboximide fungicides in greenhouse isolates of Botrytis cinerea. Plant Dis. 83:569-575 https://doi.org/10.1094/PDIS.1999.83.6.569

Cited by

  1. Characterization of resistance to multiple fungicides in Botrytis cinerea populations from Asian ginseng in northeastern China vol.144, pp.3, 2016, https://doi.org/10.1007/s10658-015-0786-5
  2. Effect of Clammy Inula (<i>Inula viscose</i>) Plant Extract in Combination with a Low Dose of the Fungicide Iprodione on <i>Botrytis cinerea in Vitro</i> and <i>in Vivo</i> vol.06, pp.09, 2015, https://doi.org/10.4236/ajps.2015.69151