DOI QR코드

DOI QR Code

Root Colonization and ISR-mediated Anthracnose Disease Control in Cucumber by Strain Enterobacter asburiae B1

  • Bharathkumar, S. (Division of Agricultural Microbiology, National Academy of Agricultural Science, RDA) ;
  • Park, Jin-Woo (Division of Agricultural Microbiology, National Academy of Agricultural Science, RDA) ;
  • Han, Ji-Hee (Division of Agricultural Microbiology, National Academy of Agricultural Science, RDA) ;
  • Park, Kyung-Seok (Division of Agricultural Microbiology, National Academy of Agricultural Science, RDA)
  • Published : 2009.12.01

Abstract

Here, we show that an endophytic bacterial strain, Enterobacter asburiae B1 exhibits the ability to elicit ISR in cucumber, tobacco and Arabidopsis thaliana. This indicates that strain B1 has a widespread ability to elicit ISR on various host plants. In this study, E. asburiae strain B1 did not show antifungal activity against tested major fungal pathogens, Colletotrichum orbiculare, Botrytis cinerea, Phytophthora capsici, Rhizoctonia solani, and Fusarium oxysporum. Moreover, the siderophore production by E. asburiae strain B1 was observed under in vitro condition. In greenhouse experiments, the root treatment of strain B1 significantly reduced disease severity of cucumber anthracnose caused by fungal pathogen C. orbiculare compared to nontreated control plants. By root treatment of strain B1 more than 50% disease control against anthracnose on cucumber was observed in all greenhouse experiments. Simultaneously, under the greenhouse condition, the soil drench of strain B1 and a chemical inducer benzothiadiazole (BTH) to tobacco plants induced GUS activity which is linked with activation of PR promoter gene. Furthermore, in Arabidopsis thaliana plants the soil drench of strain B1 induced the defense gene expression of PR1 and PDF1.2 related to salicylic acid and jasmonic acid/ethylene signaling pathways, respectively. In this study, for the main focus on root colonization by strain B1 associated with defense responses, bacterial cells of strain B1 was tagged with the gfp gene encoding the green fluorescent protein in order to determine the colonization pattern of strain B1 in cucumber. The gfp-tagged B1 cells were found on root surface and internal colonization in root, stem, and leaf. In addition to this, the scanning electron microscopy observation showed that E. asburiae strain B1 was able to colonized cucumber root surface.

Keywords

References

  1. Bell, E. and Mullet, J. E. 1993. Characterization of an Arabidopsis lipoxygenase gene responsive to methyl jasmonate and wounding. Plant Physiol. 103:1133-1137 https://doi.org/10.1104/pp.103.4.1133
  2. Benhamou, N., Belanger, R. R. and Paulitz, T. C. 1996. Ultrastructural and cytochemical aspects of the interaction between Pseudomonas fluorescens and Ri T-DNA transformed pea roots: Host response to colonization by Pythium ultimum Trow. Planta 199:105-117 https://doi.org/10.1007/BF00196887
  3. Chernin, L., Ismailov, Z., Haran, S. and Chet, I. 1995. Chitinolytic Enterobacter agglomerans antagonistic to fungal plant pathogens Appl. Environ. Microbiol. 61:1720-1726
  4. Chen, C. Q., Belanger, R. R., Benhamou, N. and Paulitz, T. C. 1999. Role of salicylic acid in systemic resistance induced by Pseudomonas spp. against Pythium aphanidermatum in cucumber roots. Eur. J. Plant Pathol. 105:477-486 https://doi.org/10.1023/A:1008743502784
  5. Delaney, T. P., Friedrich, L. and Ryals, J. A. 1995. Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance. Proc. Natl. Acad. Sci. USA 92:6602-6606 https://doi.org/10.1073/pnas.92.14.6602
  6. Desaki, Y., Miya, A., Venkatesh, B., Tsuyumu, S., Yamane, H., Kaku, H., Minami, E. and Shibuya, N. 2006. Bacterial lipo-polysaccharides induce defense responses associated with programmed cell death in rice cells. Plant Cell Physiol. 47:1530-1540 https://doi.org/10.1093/pcp/pcl019
  7. Fang, Z. D. 1998. Methods of Plant Pathology. China Agriculture Press, Beijing
  8. Goode, M. J. 1958. Physiological specialization in Colletrotri-chum lagenarium. Phytopathology 48:79-83
  9. Gyaneshwar, P., Parekh, L. J., Archana, G, Poole, P S., Collins, M. D., Hutson, R. A. and Kumar, G. N. 1999. Involvement of a phosphate starvation inducible glucose dehydrogenase in soil phosphate solubilization by Enterobacter asburiae. FEMS Microbiol. Lett. 171:223-229 https://doi.org/10.1111/j.1574-6968.1999.tb13436.x
  10. Haas, D., Keel, C. and Reimmann, C. 2002. Signal transduction in plant beneficial rhizobacteria with biocontrol properties. Antonie Leeuwenhoek 81:385-395 https://doi.org/10.1023/A:1020549019981
  11. Hallmann, J., Quadt-Hallmann, A., Rodriguez-Kabana, R. and Kloepper, J. W. 1998. Interactions between Meloidogyne incognita and endophytic bacteria in cotton and cucumber. Soil Biol. Biochem. 30:925-937 https://doi.org/10.1016/S0038-0717(97)00183-1
  12. Hallmann, A. Q., Benhamou, N. and Kloepper, J. W. 1997. Bacterial endophytes in cotton: mechanisms of entering the plant. Can. J. Microbiol. 43:577-582 https://doi.org/10.1139/m97-081
  13. Hoagland, D. R. and Boyer, T. C. 1936. General nature and process of salt accumulation by roots with description of experimental methods. Plant Physiol. 11:471-507 https://doi.org/10.1104/pp.11.3.471
  14. Jefferson, R. A. 1987. Assaying chimeric genes in plants: The GUS gene fusion system. Plant Mol. Bioi. Reptr. 5:387-405 https://doi.org/10.1007/BF02667740
  15. Jetiyanona, K. and Kloepper, J. W. 2002. Mixtures of plant growth-promoting rhizobacteria for induction of systemic resistance against multiple plant diseases. Biol. Control 24:285-291 https://doi.org/10.1016/S1049-9644(02)00022-1
  16. Kampfer, P., Ruppel, S. and Rainer, R. 2005. Enterobacter radicincitans sp. nov., a plant growth promoting species of the family Enterobacteriaceae. Syst. Appl. Microbiol. 28:213-221 https://doi.org/10.1016/j.syapm.2004.12.007
  17. Kavita, B., Sapna Shukla., Naresh Kumar, G. and Archana, G. 2008. Amelioration of phytotoxic effects of Cd on mung bean seedlings by gluconic acid secreting rhizobacterium Entero-bacter asburiae PSI3 and implication of role of organic acid. World J. Microbiol Biotechnol. 24:2965-2972 https://doi.org/10.1007/s11274-008-9838-8
  18. Kieran Germaine, K., Keogh, E., Garcia-Cabellos, G., Borremans, B., van der Lelie, D., Barac, T., Oeyen, L., Vangronsveld, J., Moore, F. P., Moore, E. R. B., Campbell, C. D., Ryan, D. and Dowling, D. N. 2004. Colonisation of poplar trees by gfp expressing bacterial endophytes. FEMS Microbiol. Ecol. 48:109-118 https://doi.org/10.1016/j.femsec.2003.12.009
  19. Kishimoto, K., Matsui, K., Ozawa, R. and Takabayashi, J. 2005. Volatile C6-aldehydes and allo-ocimene activate defense genes and induce resistance against Botrytis cinerea in Arabidopsis thaliana. Plant Cell Physiol. 46:1093-1102 https://doi.org/10.1093/pcp/pci122
  20. Kloepper, J. W., Wei, G. and Tuzun, S. 1992. Rhizosphere population dynamics and internal colonization of cucumber by plant growth-promoting rhizobacteria which induce systemic resistance to Colletotrichum orbiculare. Pages 185-191 in: Biological control of plant diseases. E. S. Tjamos, ed. Plenum Press, New York
  21. Leeman, M., Denouden, E. M., van Pelt, J. A., Dirkx, F., Steijl, H., Bakker, P. and Schippers, B. 1996. Iron availability affects induction of systemic resistance to fusarium wilt of radish by Pseudomonas fluorescens. Phytopathology 86:149-155 https://doi.org/10.1094/Phyto-86-149
  22. Luria, S. E. and Burrous, J. W. 1955. Hybridization between Escherichia coli and Shigella. J Bacteriol. 74:461-476
  23. Mauch-Mani, B. and Slusarenko, A. J. 1996. Production of salicylic acid precursors is a major function of phenylalanine ammonialyase in the resistance of Arabidopsis to Peronospora parasitica. Plant Cell 8:203-212 https://doi.org/10.1105/tpc.8.2.203
  24. Maurhofer, M., Reimmann, C., Schmidli-Sacherer, P., Heeb, S., Haas, D. and Defago, G. 1998. Salicylic acid biosynthesis genes expressed in Pseudomonas fluorescens strain P3 improve the induction of systemic resistance in tobacco against tobacco necrosis virus. Phytopathology 88:678-684 https://doi.org/10.1094/PHYTO.1998.88.7.678
  25. McConn, M., Creelman, R. A., Bell, E., Mullet, J. E. and Browse, J. 1997. Jasmonate is essential for insect defense in Arabidopsis. Proc. Natl. Acad. Sci. USA 94:5473-5477 https://doi.org/10.1073/pnas.94.10.5473
  26. Melan, M. A., Dong, X., Endara, M. E., Davis, K. R., Ausubel, F. M. and Peterman, T. K. 1993. An Arabidopsis thaliana lipoxygenase gene can be induced by pathogens, abscisic acid, and methyljasmonate. Plant Physiol. 101:441-450 https://doi.org/10.1104/pp.101.2.441
  27. Milagres, A. M. F., Machuca, A. and Napoleao, D. 2004. Detection of siderophore production from several fungi and bacteria by a modification of chrome azurol S (CAS) agar plate assay. J. Microbiol. Methods 37:1-6 https://doi.org/10.1016/S0167-7012(99)00028-7
  28. Musson, G., Mcinroy, J. A. and Kloepper, J. W. 1995. Development of delivery systems for introducing endophytic bacteria into cotton. Biocon. Sci. Technol. 5:407-416 https://doi.org/10.1080/09583159550039602
  29. Ongena, M., Jourdan, E., Adam, A., Schafer, M., Budzikiewicz, H. and Thonart, P. 2008. Amino acids, iron and growth rate as key factors influencing production of the Pseudomonas putida BTP1benzylamine derivative involved in systemic resistance induction in different plants. Microb. Ecol. 55:280-292 https://doi.org/10.1007/s00248-007-9275-5
  30. Park, K. S. and Kloepper, J. W. 2000. Activation of PR-la promoter by rhizobacteria which induce systemic resistance in tobacco against Pseudomonas syringae pv. tabaci. Biol. Control 18 :2-9 https://doi.org/10.1006/bcon.2000.0815
  31. Penninckx, I. A. M. A., Thomma, B. P. H. J., Buchala, A., Metraux, J. P. and Broekaert, W F. 1998. Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell 10:2103-2113 https://doi.org/10.1105/tpc.10.12.2103
  32. Penninckx, I. A. M. A., Eggermont, K., Terras, F. R. G., Thomma, B. P. H. J., De Samblanx, G. W., Buchala, A., Metraux, J. P., Manners, J. M. and Broekaert, W. F. 1996. Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell 8:2309-2323 https://doi.org/10.1105/tpc.8.12.2309
  33. Pieterse, C. M., van Wees, S. C., van Pelt, J. A., Knoester, M., Laan, R., Gerrits, H., Weisbeek, P. J. and van Loon, L. C. 1998. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10:1571-80 https://doi.org/10.1105/tpc.10.9.1571
  34. Pieterse, C. M. J. and van Loon, L. C. 1999. Salicylic acid independent plant defense pathways. Trends Plant Sci. 4:52-58 https://doi.org/10.1016/S1360-1385(98)01364-8
  35. Pieterse, C. M. J., van Wees, S. C. M., Hoffiand, E., van Pelt, J. A. and van Loon, L. C. 1996. Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell 8:1225-1237 https://doi.org/10.1105/tpc.8.8.1225
  36. Potter, S., Uknes, S., Lawton, K., Winter, A. M., Chandler, D., DiMaio, J., Novitzky, R., Ward, E. and Ryals, J. 1993. Regulation of a hevein-like gene in Arabidopsis. Mol. Plant-Microbe Interact. 6:680-685 https://doi.org/10.1094/MPMI-6-680
  37. Press, C. M., Wilson, M., Tuzun, S. and Kloepper, J. W. 1997. Salicylic acid produced by Serratia marcescens 90-166 is not the primary determinant of induced systemic resistance in cucumber or tobacco. Mol. Plant-Microbe Interact. 10:761-768 https://doi.org/10.1094/MPMI.1997.10.6.761
  38. Ran, L. X., van Loon, L. C. and Bakker, P. A. H. M. 2005. No role for bacterially produced salicylic acid in rhizobacterial induction of systemic resistance in Arabidopsis. Phytopathology 95:1349-1355 https://doi.org/10.1094/PHYTO-95-1349
  39. Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Kloepper, J. W. and Pare, P. W. 2004. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 134:1017-1026 https://doi.org/10.1104/pp.103.026583
  40. Samac, D. A., Hironaka, C. M., Yallaly, P. E. and Shah, D. M. 1990. Isolation and characterization of the genes encoding basic and acidic chitinase in Arabidopsis thaliana. Plant Physiol. 93:907-914 https://doi.org/10.1104/pp.93.3.907
  41. Sambrook, J., Fritsch, E. and Maniatis, T. 1989. Molecular Cloning: a Laboratory Manual Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
  42. SAS Institute. 1995. JMP Statistics and Graphics Guide. Version 3. pp. 65-95. Cary, NC
  43. Schneider, S. and Ullrich, W. R. 1991. Differential induction of resistance and enhanced enzyme activities in cucumber and tobacco caused by treatment with various abiotic and biotic inducers. Physiol. Mol. Plant Pathol. 45:291-301 https://doi.org/10.1016/S0885-5765(05)80060-8
  44. Shoebitz, M., Ribaudo, C. M., Pardo, M. A., Cantore, M. L., Luigi Ciampi and Cura, J. A. 2007. Plant growth promoting properties of a strain of Enterobacter ludwigii isolated from Lolium perenne rhizosphere. Soil Bioi. Biochem. 1-7
  45. Shin, J. H., Yoon, J. H., Ahn, E. K., Kim, M. S., Sim, S. J. and Park, T. H. 2007. Fermentative hydrogen production by the newly isolated Enterobacter asburiae SNU-1. International J. Hydrogen Energy 32:192-199 https://doi.org/10.1016/j.ijhydene.2006.08.013
  46. Siedow, J. N. 1991. Plant lipoxygenases: structure and function. Ann. Rev. Plant Physiol. Plant Mol. Biol. 42:145-188 https://doi.org/10.1146/annurev.pp.42.060191.001045
  47. Takeuchi, T., Yoshikawa, Y., Takeba, G., Tanaka, K., Shibata, D. and Horino, O. 1990. Molecular cloning and ethylene induction of mRNA encoding a phytoalexin elicitor-releasing factor, $\beta$-1 ,3,-endoglucanase, in soybean. Plant Physiol. 93:673-682 https://doi.org/10.1104/pp.93.2.673
  48. Thomma, B. P. H. J., Eggermont, K., Penninckx, I. A. M. A., Mauch-Mani, B., Cammue, B. P. A. and Broekaert, W. F. 1998. Separate jasmonate-dependent and salicylic acid-dependent defense response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc. Natl. Acad. Sci. USA 95:15107-15111 https://doi.org/10.1073/pnas.95.25.15107
  49. Uknes, S., Dincher, S., Friedrich, L., Negrotto, D., Williams, S., Thompson-Taylor, H., Potter, S., Ward, E. and Ryals, J. 1993. Regulation of pathogenesis-related protein-1a gene expression in tobacco. Plant Cell 5:159-169 https://doi.org/10.1105/tpc.5.2.159
  50. Uknes, S., Mauch-Mani, B., Moyer, M., Potter, S., Williams, S., Dincher, S., Chandler, D., Slusarenko, A., Ward, E. and Ryals, J. 1992. Acquired resistance in Arabidopsis. Plant Cell 4:645-656 https://doi.org/10.1105/tpc.4.6.645
  51. van Loon, L. C. and Glick, G. R. 2004. Increased plant fitness by rhizobacteria. Pages 177-205 in: Molecular Ecotoxicology of Plants. Vol. 170. H. Sandermann, ed. Springer-Verlag, Berlin https://doi.org/10.1007/978-3-662-08818-0_7
  52. van Loon, L.C., Bakker, P.A.H.M. and Pieterse, C.M.J. 1998. Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol. 36:453-483 https://doi.org/10.1146/annurev.phyto.36.1.453
  53. van Peer, R., Niemann, Gland Schippers, B. 1991. Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology 81:728-734 https://doi.org/10.1094/Phyto-81-728
  54. van Wees, S. C. M., De Swart, E. A. M., Van Pelt, J. A., Van Loon, L. C. and Pieterse, C. M. J. 2000. Enhancement of induced disease resistance by simultaneous activation of salicylate-and jasmonate-dependent defense pathways in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 97:8711-8716 https://doi.org/10.1073/pnas.130425197
  55. van Wees, S. C. M., Luijendijk, M., Smoorenburg, I., van Loon, L. C. and Pieterse, C. M. J. 1999. Rhizobacteria-mediated induced systemic resistance (ISR) inArabidopsis is not associated with a direct effect on expression of known defense-related genes but stimulates the expression of the jasmonate-inducible gene Atvsp upon challenge. Plant Mol. Biol. 41:537-549 https://doi.org/10.1023/A:1006319216982
  56. van Wees, S., Pieterse, C., Trijssenaar, A., Vant Westende, Y., Hartog, F. and van Loon, L. C. 1997. Differential induction of systemic resistance in Arabidopsis by biocontrol bacteria. Mol. Plant-Microbe Interact. 10:716-724 https://doi.org/10.1094/MPMI.1997.10.6.716
  57. Vleesschauwer, D. D., Chernin, L. and Hafte, M. M. 2009. Differential effectiveness of Serratia plymuthica ICl270-induced systemic resistance against hemibiotrophic and necrotrophic leaf pathogens in rice. BMC Plant BioI. 9:9 https://doi.org/10.1186/1471-2229-9-9
  58. Wei, G, Kloepper, J. W. and Tuzun, S. 1991. Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phyto pathology 81:1508-12
  59. Wilson, K. J., Jefferson, R. A. and Hughes, S. R. 1992. The Escherichia coli gus operon: Induction and expression of the gus operon in E. coli and the occurrence and use of GUS in other bacteria. In 'GUS Protocols: Using the GUS Gene as a Reporter of Gene Expression' (S. R. Gallagher, Ed.), pp. 7-22. Academic Press, New York
  60. Wisniewski, M., Wilson, C. and Hershberger, W. 1989. Characterization of inhibition of Rhizopus stolonifer germination and growth by Enterobacter cloacae. Can. J. Bot. 67:2317-2323 https://doi.org/10.1139/b89-296
  61. Zdor, R. and Anderson, A. J. 1992. Influence of root colonizing pseudomonads on defense mechanisms of bean. Plant Soil 140:99-107 https://doi.org/10.1007/BF00012811

Cited by

  1. Enterobacter asburiaeKE17 association regulates physiological changes and mitigates the toxic effects of heavy metals in soybean vol.17, pp.5, 2015, https://doi.org/10.1111/plb.12341