Disease Reports

First Report of Anthracnose Occurrence on Sloumi by Colletotrichum gloeosporioides in Korea

Kyoung Ok Choi and Jeun Kyu Hong*
Department of Horticultural Sciences, Jinju National University, Jinju 660-758, Korea
(Received on September 13, 2009; Accepted on November 23, 2009)

Sloumi (Daphniphyllum macropodum Miquel) is a garden tree having evergreen broadleaves and is originated from East Asia, including Japan, Taiwan, and southeastern region of China, under warm and humid weather condition (Hogan, 2008). In October 2008, sloumi showing typical anthracnose disease symptoms on leaves was found in the greenhouse, South Korea. Colletotrichum gloeosporioides causing anthracnose leaf spot was isolated in Japan and deposited in National Institute of Agrobiological Science (NIAJ; MAFF no. 237926) in 1999.

Dark brown symptom occurred on the leaf margin of sloumi trees. At the center of the lesion, black target-like ring appeared, and circular black granules were observed under the stereomicroscope (Fig. 1A). On potato dextrose agar (PDA), isolate CgJ-1 produced salmon colored conidial mass 5 days after inoculation (Fig. 1B left), and aerial mycelia turned into grayish olive color 9 days after incubation (Fig. 1B right). Conidia of the fungus were straight, cylindrical, apex obtuse, and base sub-truncate, measured 13.4-16.3×4.8-6.7 μm in size (Fig. 1C-F). Appressoria were brown to dark brown, ovate, clavate and measured 6.7-8.4×4.6-7.9 μm in size (Fig. 1E and F). Size and shape of conidia and appressoria of CgJ-1 were similar to morphological characteristics of C. gloeosporioides, previously described by Sutton (1992).

PCR amplification and sequencing of the ITS-rDNA region and partial β-tubulin gene were performed and sequence data were deposited in GenBank (accession no. GU844841 and GU844842, respectively). ITS-rDNA regions were amplified using taxon-specific forward primer for C. gloeosporioides (named CgFnt) coupled with reverse primer (named ITS4) (Freeman et al., 2002). Partial β-tubulin gene of the isolate CgJ-1 amplified using primers TB5 and TB6 (Talhinhas et al., 2002) demonstrated that the sequence was highly homologous to tubulin sequences of C. gloeosporioides isolates in GenBank, but moderately homologous to the sequences from other Colletotrichum spp. (Fig. 2). Molecular analysis indicated that CgJ-1 is classified as C. gloeosporioides.

Mycelial agar plug was placed on sloumi leaves with or without pin-wounding, and inoculated leaves were put in the dark humidity chamber (26°C, 95%) for symptom development. Dark brown water-soaked areas emerge on the abaxial side 2 weeks after inoculation with wounding (Fig. 3A). At 3 weeks later, lesions enlarged and exhibited salmon colored exudates, which became dried black granular masses 4 weeks after inoculation (Fig. 3B). Wounding itself induced small brown speck 2 weeks after inoculation, however, lesions were not enlarged even 4 weeks after wounding.

Acknowledgements

This work was supported by a research grant 2009 to Jeun Kyu Hong from Jinju National University.

References


*Corresponding author (jkong@jinju.ac.kr)