A Novel Rate Control for Improving the QoE of Multimedia Streaming Service in the Internet Congestion

인터넷 혼잡상황에서 멀티미디어 스트리밍 서비스의 QoE 향상을 위한 전송률 제어기법

  • 구자헌 (광운대학교 전자통신공학과) ;
  • 정광수 (광운대학교 전자통신공학과)
  • Published : 2009.12.15

Abstract

The delivery of multimedia that efficiently adapts its bit-rate to changing network characteristics and conditions is one of the important challenging tasks in the design of today's real-time multimedia streaming systems such as IPTV, Mobile IPTV and so on. In these work, the primary focus is on network congestion, to improve network stability and inter-protocol fairness. However, these existing works have problems which do not support QoE (Quality of Experience), because they did not consider essential characteristics of contents playback such as the media continuity. In this paper, we propose a novel rate control scheme for improving the QoE of multimedia streaming service in the Internet congestion, called NCAR (Network and Client-Aware Rate control), which is based on network-aware congestion control and client-aware flow control scheme. Network-aware congestion control of the NCAR offers an improving reliability and fairness of multimedia streaming, and reduces the rate oscillation as well as keeping high link utilization. Client-aware flow control of NCAR offers a removing the media discontinuity and a suitable receiver buffer allocation, and provides a good combination of low playback delay. Simulation results demonstrate the effectiveness of our proposed schemes.

IPTV나 Mobile IPTV와 같은 실시간 멀티미디어 스트리밍 시스템의 설계에 있어 중요한 요소 중 하나는 변화하는 네트워크 특성과 상태에 효율적으로 적응하여 멀티미디어 데이터를 전달하는 것이다. 네트워크 적응적 데이터 전송은 네트워크의 혼잡상황에서 네트워크의 안정성과 프로토콜간 공정성을 향상시킬 수 있지만 영상재생의 연속성과 같은 콘텐트 재생 특성을 고려하지 않아 사용자에게 양질의 QoE(Quality of Experience)를 제공하지 못하는 문제점을 가지고 있다. 본 논문에서는 콘텐트의 재생 특성을 고려하지 않아 발생하는 문제점을 해결하기 위해 인터넷 혼잡상황에서 멀티미디어 스트리밍 서비스의 QoE 향상을 위한 새로운 전송률 제어기법인 NCAR(Network and Client-Aware Rate control)을 제안하였다. 제안한 NCAR 기법은 네트워크 인지형 혼잡제어(Congestion Control)와 클라이언트 인지형 흐름제어(Flow Control)를 기반으로 동작하고 있다. 네트워크 인지형 혼잡제어는 멀티미디어 스트리밍의 공성정과 안정성을 향상시키고 높은 링크 활용도와 전송률의 변화를 감소시키며 클라이언트 인지형 흐름제어는 미디어 재생의 불연속성을 제거하고 안정된 버퍼할당과 낮은 재생지연시간의 좋은 특성을 제공한다. 시뮬레이션 결과를 통해 제안한 방법의 유효성을 확인하였다.

Keywords

References

  1. B. Wang, W. Wei, Z. Guo, and D. Towsley, Multipath live streaming via TCP: scheme, performance and benefits," CoNEXT '07: Proceedings of the 2007 ACM CoNEXT conference, December 2007
  2. R. Rejaie, M. Handley, and D. Estrin, "RAP: An end-to-end rate based congestion control mechanism for real-time streams in the Internet," IEEE INFOCOMM, 1999
  3. D. Bansal and H. Balakrishnan, "Binomial congestion control algorithms," IEEE INFOCOM, 2001
  4. I. Rhee, V. Ozdemir, and Y. Yi, "TEAR: TCP emulation at receivers-flow control for multimedia streaming," Technical Report, NCSU, 2000
  5. S. Floyd, M. Handley, J. Padhye, and J. Widmer, "Equation-based congestion control for unicast applications," ACM SIGCOMM, 2000
  6. T. Kim and M. H. Ammar, "Optimal quality adaptation for MPEG-4 fine-grained scalable video," IEEE INFOCOM, 2003
  7. J. Yan, K. Katrinis, M. May, and B. Plattner, "Media-and tcp-friendly congestion control for scalable video streams," Multimedia, IEEE Transactions on, vol.8, no.2, pp.196-206, 2006 https://doi.org/10.1109/TMM.2005.864265
  8. J. Padhye, J. Kurose, D. Towsley, and R. Koodli, "A model based TCP-friendly rate control protocol," NOSSDAV, 1999
  9. J. Padhye, V. Firoiu, D. Towsley, and J. Kurpose, "Modeling TCP throughput: A simple model and its empirical validation," ACM SIGCOMM, 1998
  10. J. Bolot and T. Turletti, "A rate control mechanism for packet video in the internet," IEEE INFOCOM, pp.1216-1223, 1994
  11. A. Ortega and M. Khansari, "Rate control for video coding over variable bit rate channels with applications to wireless transmission," IEEE Image Processing, 1995
  12. W. Tan and A. Zakhor, "Error resilient packet video for the internet," IEEE Image Processing, 1998
  13. J. Lee, T. Kim, and S. Ko, "Motion prediction based on temporal layering for layered video coding," ITC-CSCC, vol.1, pp.245-248, 1998
  14. S. McCanne, "Scalable compression and transmission of internet multicast video," Ph.D. thesis, University of California Berkeley, UCB/CSD-96-928, 1996
  15. S. McCanne and M. Vetterli, "Joint source/channel coding for multicast packet video," IEEE Image Processing, pp.776-785, 1995
  16. M. Vishwanath and P. Chou, "An efficient algorithm for hierarchical compression of video," IEEE Image Processing, pp.275-279, 1994
  17. R. Rejaie, M. Handley, and D. Estrin, "Quality adaptation for unicast audio and video," AGM SIGCOMM, 1999
  18. R. Rejaie, M. Handley, and D. Estrin, "Layered quality adaptation for internet video streaming," IEEE Journal on Selected Areas of Communications, 2000
  19. N. Feamster, D. Bansal, and H. Balakrishnan, "On the interactions between layered quality adaptation and congestion control for streaming video," Packet Video Workshop, 2001
  20. N. Wakamiya, M. Miyabayashi, M. Murata, and H. Miyahara, "MPEG-4 video transfer with TCP-friendly rate control," IFIP/IEEE MMNS, 2001
  21. T. Kim and M. H. Ammar, "Optimal quality adaptation for scalable encoded video," IEEE Journal on Selected Areas of Communications, 2005
  22. H. Schwarz, D. Marpe, and T. Wiegand, "Overview of the Scalable Video Coding Extension of the H.264/AVC Standard," IEEE Trans. Circuits Syst. Video Techn., 2007
  23. The network simulator ns-2, http://www.isi.edu/nanarn/ns/
  24. Joint Video Team (JVT) of ISO/IEC MPEG, ITU-T VCEG, "Joint scalable video model JSVM-9," JVT-V202, January 2007