Background: Vascular ring is a rare anomaly of the aortic arch. We did surgical repair procedures on 16 cases of vascular ring over the past 12 years. This article reviews our results. Material and Method: Between 1995 and 2007, 16 patients (5 with double aortic arch, 7 with right aortic arch-left ligamentum, 4 with pulmonary artery sling) underwent surgical repair. Mean age at the time of the operation were as follows: double aortic arch, 5.7±5.5 years; right aortic arch-left ligamentum, 6.1±13.4 years; pulmonary artery sling, 2.9±2.6 years. Five patients (71%) with right aortic arch-left ligamentum had an associated Kommerell’s diverticulum. Two patients (40%) with double aortic arch, 2 patients (8.6%) with right aortic arch-left ligament and 4 patients (100%) with pulmonary artery sling had associated airway stenosis. Cardiac anomalies were present in 8 of 16 patients. Result: There was no peri-operative or post-operative mortality. The mean hospital stay was 27.1±38.2 days. None of our patients underwent reoperation. Conclusion: Vascular ring is rare, but, it needs surgical correction. It is important to suspect the diagnosis and to validate with echocardiography. Preoperative and postoperative computed tomography and bronchoscopy are useful to evaluate the airway and surrounding structures.

(Key words: 1. Anomaly 2. Aorta, arch 3. Pulmonary arteries 4. Tracheal stenosis 5. Vascular ring)

대상 및 방법

1995년 11일부터 2007년 9월까지 혈관부로 분류에서 수술을 받은 16명의 환아들 대상으로 하였다. 이 논문에
서는 혈관류를 International Congenital Heart Surgery Nomenclature and Database Committee (Table 1)의 분류를 따 랐다[2]. 그 결과 이중 대동맥공 5명 (patient 1~5) (Table 2), 우측 대동맥공-동맥관 인대가 7명 (patient 6~12) (Table 3) 그리고, 패동맥 손이 4명 (patient 13~16) (Table 4)이었다. 수술 당시의 연령은 전체 그룹에서 5.2±9.6세였고, 이중 대동맥공 그룹에서 5.7±5.5세, 우측 대동맥공-동맥관 인대 그룹에서 6.1±1.3세, 패동맥 손이 그룹에서 2.9±2.6세였다. 성별 분포는 전체 그룹에서 남:여 비율이 1:1 이었고, 이중 대동맥공 그룹에서 1:4, 우측 대동맥공-동맥관 인대 그룹에서 5:2, 패동맥 손이 그룹에서 1:1 이었다. 함께 진단된 심장 기형은 전체 그룹에서 50% (n=8) 있고, 이중 대동맥공 그룹에서 80% (n=4), 우측 대동맥공-동맥관 인대 그룹에서 57% (n=4), 패동맥 손이 그룹에서 0% (n=0)였다. 심장 기형 별 빈도는 심실 중격 결손이 7예 로 가장 많았다.

이중 대동맥공 5예 모두 우측 대동맥 우세형이었다 (Fig. 1). 이중 3명에서는 출생 직후부터 시작된 호흡곤란이 있 었고, 나머지 2명은 미리 진단된 심실 경상 결손에 대한 검사 도중에 함께 진단된 경우였다. 동반 심장 기형이 4예 있었고, 대혈관전위, 심실중격 결손, 패동맥 혈착과 이중 대동맥공이 동반된 1예를 제외한 나머지 3예에서는 모두 동반 심장 기형과 이중 대동맥공을 한꺼번에 수술 하였다. 5예 모두 우측 대동맥 우세형이었으므로 좌측 대동맥 공 분리술을 시행하였다. 대혈관전위, 심실중격 결손, 패 동맥 혈착이 동반된 1예에서는 (patient 4) (Table 2) 좌측 빈 형 Blalock-Taussing 단락 수술 후 Rastelli 수술을 시행하였고, 도판 혈착으로 도판 교환술을 하면서 이중 대동맥공에 대해 좌측 대동맥공 분리술을 함께 시행하였다 (Table 2).

<table>
<thead>
<tr>
<th>Table 1. Vascular ring hierarchy as defined by the International Congenital Heart Surgery Nomenclature and Database Committee[2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Double aortic arch</td>
</tr>
<tr>
<td>Right arch dominant</td>
</tr>
<tr>
<td>Left arch dominant</td>
</tr>
<tr>
<td>Balanced arches</td>
</tr>
<tr>
<td>Right aortic arch-left ligamentum</td>
</tr>
<tr>
<td>Mirror-imaging branching</td>
</tr>
<tr>
<td>Retrosophageal left subclavian artery</td>
</tr>
<tr>
<td>Circumflex aorta</td>
</tr>
<tr>
<td>Innominate artery compression</td>
</tr>
<tr>
<td>Pulmonary artery sling</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2. Clinical characteristics of patients having double aortic arch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt. Age (years)</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>1 2 4 3 14 5</td>
</tr>
<tr>
<td>0.2 4 10 14 0.04</td>
</tr>
<tr>
<td>0.2 4 10 14 0.04</td>
</tr>
</tbody>
</table>

ACC=Aorta cross-clamping; ASD=Atrial septal defect; CPB=Cardiopulmonary bypass; PS=Pulmonary stenosis; Pr=Patient; TAPVR-Total anomalous pulmonary venous return; TGA-Transposition of great arteries; VSD-ventricular septal defect.
<table>
<thead>
<tr>
<th>Pt</th>
<th>Age (years)</th>
<th>Sex</th>
<th>Clinical presentation</th>
<th>Kommerell’s diverticulum</th>
<th>LSCA transfer</th>
<th>Airway stenosis</th>
<th>Cardiac anomaly</th>
<th>Approach</th>
<th>CPB time (min)</th>
<th>ACC time (min)</th>
<th>Complication</th>
<th>Hospital stay (days)</th>
<th>Follow up duration (month)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>0.33</td>
<td>Male</td>
<td>Pneumonia</td>
<td>None</td>
<td>To d-Ao</td>
<td>Right main bronchial</td>
<td>VSD</td>
<td>Right thoracotomy</td>
<td>(—)</td>
<td>(—)</td>
<td>None</td>
<td>160</td>
<td>74.0</td>
</tr>
<tr>
<td>7</td>
<td>39</td>
<td>Female</td>
<td>Dysphagia</td>
<td>Present</td>
<td>No</td>
<td>(—)</td>
<td>None</td>
<td>Left thoracotomy</td>
<td>(—)</td>
<td>(—)</td>
<td>None</td>
<td>15</td>
<td>85.7</td>
</tr>
<tr>
<td>8</td>
<td>1.92</td>
<td>Male</td>
<td>Vomiting</td>
<td>None</td>
<td>No</td>
<td>Tracheal</td>
<td>VSD</td>
<td>Median sternotomy</td>
<td>95</td>
<td>51</td>
<td>None</td>
<td>8</td>
<td>50.1</td>
</tr>
<tr>
<td>9</td>
<td>0.04</td>
<td>Male</td>
<td>Mmurur</td>
<td>Present</td>
<td>No</td>
<td>(—)</td>
<td>CoA</td>
<td>Right thoracotomy</td>
<td>(—)</td>
<td>14</td>
<td>Wound infection</td>
<td>10</td>
<td>59.6</td>
</tr>
<tr>
<td>10</td>
<td>0.5</td>
<td>Male</td>
<td>Pneumonia</td>
<td>Present</td>
<td>To d-Ao</td>
<td>(—)</td>
<td>VSD</td>
<td>Left thoracotomy</td>
<td>(—)</td>
<td>(—)</td>
<td>Chylothorax</td>
<td>49</td>
<td>5.6</td>
</tr>
<tr>
<td>11</td>
<td>0.13</td>
<td>Male</td>
<td>Dysphagia</td>
<td>Present</td>
<td>To LCCA</td>
<td>(—)</td>
<td>None</td>
<td>Left thoracotomy</td>
<td>(—)</td>
<td>(—)</td>
<td>None</td>
<td>48</td>
<td>10.2</td>
</tr>
<tr>
<td>12</td>
<td>0.92</td>
<td>Female</td>
<td>Vomiting</td>
<td>Present</td>
<td>To LCCA</td>
<td>(—)</td>
<td>None</td>
<td>Left thoracotomy</td>
<td>(—)</td>
<td>(—)</td>
<td>None</td>
<td>22</td>
<td>6.3</td>
</tr>
</tbody>
</table>

ACC=Aorta cross clamping; CoA=Cocartion of aorta; CPB=Cardiopulmonary bypass; d-Ao=Descending aorta; LCCA=Left common carotid artery; LSCA=Left subclavian artery; Pt=Patient; VSD=Ventricular septal defect.

Table 4. Clinical Characteristics of patients having pulmonary artery sling.

<table>
<thead>
<tr>
<th>Patients</th>
<th>Age (years)</th>
<th>Sex</th>
<th>Clinical presentation</th>
<th>Airway stenosis</th>
<th>Tracheoplasty</th>
<th>Cardiac anomaly</th>
<th>Approach</th>
<th>CPB time (min)</th>
<th>Complication</th>
<th>Hospital stay (days)</th>
<th>Follow up duration (month)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>3</td>
<td>Female</td>
<td>Respiratory difficulty</td>
<td>Tracheal</td>
<td>Not done</td>
<td>None</td>
<td>Median sternotomy</td>
<td>(—)</td>
<td>None</td>
<td>7</td>
<td>57.4</td>
</tr>
<tr>
<td>14</td>
<td>7</td>
<td>Male</td>
<td>Stridor</td>
<td>Tracheal</td>
<td>Not done</td>
<td>None</td>
<td>Median sternotomy</td>
<td>31</td>
<td>None</td>
<td>5</td>
<td>20.5</td>
</tr>
<tr>
<td>15</td>
<td>1.42</td>
<td>Male</td>
<td>Wheezing</td>
<td>Tracheal</td>
<td>Not done</td>
<td>None</td>
<td>Median sternotomy</td>
<td>49</td>
<td>None</td>
<td>8</td>
<td>41.5</td>
</tr>
<tr>
<td>16</td>
<td>0.25</td>
<td>Female</td>
<td>Pneumonia</td>
<td>Tracheal and BEF</td>
<td>Not done</td>
<td>None</td>
<td>Median sternotomy</td>
<td>39</td>
<td>Prolonged</td>
<td>58</td>
<td>42.4</td>
</tr>
</tbody>
</table>

BES=Bronchosophasgeal fistula; CPB=Cardiopulmonary bypass.
우측 대동맥공-동맥관 인대 7예 중 5예에서는(71%)
Kommerell 개선이 있었다(Fig. 2). 주 중앙은 연하곤란, 구
토 등의 소화기계 확장(n=4), 때런 등의 호흡기계 증상
(n=2)이었고, 1예에서는 종상 없이 갑작스럽게 청진되어 이
에 대한 검사 도중에 발견되었다. Kommerell 개선이 동반
된 5예 중 3예에서 개선 절제술 및 좌위근하 동맥 전이술
이 시행되었으며, 이 중 2에는 좌측 충동혈액으로(Fig. 3)
에는 하행 흉부 대동맥으로 치유되었다. 나머지 2예 중 1
예에서는(patient 7) (Table 3) 대동맥관 인대 분리술, 개선 축
소 및 고정술을 시행하였고, 나머지 1예에서는(patient 9)
(Table 3) 동반된 대동맥 축착에 대하여 대동맥 경계 및
단단 분리함을 시행하였다. 4예에서 동반 심장기형이 있
었고, 이 중 심실 중격 결손 1예와 대동맥 축착 1예에서는
혈관판과 함께 수술해 주었다. 나머지 심실 중격 결손 2예
중 1에는 폐렴이 심하여 심실 중격 결손은 경과관찰 하였
고(patient 10) (Table 3), 나머지 1예에서는(patient 6) (Table
3) 동반된 심실 중격 결손에 의한 음영성 심부전의 소견
이 의심되어 심실 중격 결손부의 벽체 분리술을 먼저 시
행하였다. 그러나 인공호흡기 이탈이 되지 않아 기관지
내시경을 시행하였다. 그 결과 기관과 우측 주기관지를
압박하는 박동성 증가가 발견되었고, 전신과 단층촬영 검
사 결과 하행 대동맥과 우측 폐동맥이 우측 주기관지를
압박하는 소견이 관찰되었다. 이에 대하여 서형적 흉골
절개술을 시행하였고, 수술 소견 상 중격동 임파전에 의
한 기관지 압박 소견을 보아 우측 중격동 임파전 절개술
시행하였다. 그러나 여전히 인공호흡기 이탈이 되지 않아
더 이상 기관지 내시경을 시행하였고, 그 결과 우측 주기관
지 압박하는 박동성 증가 소견이 그대로 남아있어 대동
맥 고정술을 시행하였다. 그러나 이번에도 인공호흡기 이
탈이 되지 않아 3차원 전산화 단층촬영을 시행하였고, 검
사 결과 하행 대동맥에서 기관하 좌측 채골하 동맥이
발전되어 좌측 채골하 동맥 전이습(하행 대동맥에 채굴
합) 및 대동맥 고정술을 시행하였다. 이 후 인공호흡기 이
탈이 가능하였고 구토 등의 소화기계 증상을 보여 식도 조
영상 및 위내시경을 시행하였다. 검사결과 특이 소견은
없었고, 구강 자극 치료 후 식이가 순조롭게 진행 되어 완
료하였다(Table 3).

체동맥 습립 그룹에서는 모두 레 pomi, 호흡곤란, 거진 숭
소리 등 호흡기계 증상을 보소하였다. 좌측 채동맥 치환
술 및 대동맥관 분리술을 시행하였으며(Fig. 4), 1예에서는
기관지-식도부가 동반되어 있어 두루 절개술 시술을 함께
시행하였다. 4예 모두에서 기관협착이 동반되어 있었으나
심하지 않아 수술을 시행하는 것이었다. 3예에서 좌측 채
동맥을 검저로 잘라 혈압이 감소하여 체형 바이패스 하에
수술을 시행하였다(Table 4).
16예 모두에서 수술 관련 사망은 없었다. 전체 그룹의 평균 기간은 27.1±38.2일이었고, 이중 대동맥공 그룹의 경우 8.6±1.9일, 우측 대동맥공-동맥관 압박 그룹의 경우 44.6±49.7일, 폐동맥 슬링 그룹의 경우 19.5±22.3일이었다.

이중 대동맥공 그룹에서는 협병증이 발생하지 않았고, 우측 대동맥공-동맥관 압박 그룹에서는 장치 감염 1예, 유 미충 1예가 발생하였다. 유미충은 항생제 치료 후 호전되었다. 그리고 1예에서(patient 6) (Table 3) 인공호흡기 이탈의 이래를 겪었다. 폐동맥 슬링 그룹 중 기관지-식도부 가 동반된 1예에서(patient 16) (Table 4) 슬 후 인공호흡기 이탈의 이래를 겪었고, 이는 수술 전부터 있던 흉부성 폐렴이 그 원인이었다. 흉통성 폐렴에 대한 치료 후 인공 호흡기 이탈되었고, 다른 합병증 없이 퇴원하였다. 폐동맥 슬링 그룹 4명 모두 기관 협착이 동반되어 있었으나 심하자 않아 수술을 시행하지 않았고, 이중 3명에서는 외래에서 시행한 전산화 단층촬영 검사에서 기관 협착 소견이 호전되거나 사라졌다. 기관지-식도부를 동반했던 1명은 수술 2년 후에 시행한 전산화 단층촬영에서 기관 협착이 확인되는 양상이 있었으나 1년 후 다시 시행한 전산화 단층 활염에서는 기관 협착이 희박한 것으로 조사되었다.

그러나 증상이 경미하여 외래 치료하였다. 1예에서 좌측 폐동맥-주 폐동맥-문맥부의 협착은 없었으나, 좌측 폐동맥 중간 부분의 국소적 협착(2~2.4 mm) 소견이 있었다. (patient 16) (Table 4) 을 후 4일째 검사한 폐 판찰 검사 상 좌측 폐 단순 푸익률이 95% : 5%로 감소해 있었지만 중상이 없어 경과 관찰 하였고, 1년 5개월 후 다시 검사한 폐 판찰 검사에서는 61% : 39%로 호전되었다. 추적 관찰 기간은 전체 그룹에서 39.1±25.7개월, 이중 대동맥공 그룹에서 34.4±23.7개월, 우측 대동맥공-동맥관 압박 그룹에서 41.6±31.4개월, 폐동맥 슬링 그룹에서 40.5±13.2개월이었다.
라. 추적 관찰 기간 중 중증 재발 및 문화학적 혈청 등으로 인해 혈관질에 대하여 재수술을 시행한 경우는 없었다.

혈관질은 그 해부학적 구조의 다양성과 그에 따른 수술 방법의 다양성으로 인해 정확한 수술 전 진단이 필수적이다. 진단을 위해 식도 조영술, 기관지경 검사를 비롯하여 전산화 단층촬영, 자기공명영상, 심장 초음파 등이 주로 이용되고 있다. 심장 조영술은 혈관질 진단에서 가장 중요한 검사로 여겨졌으나 최근에는 전산화 단층촬영, 자기공명영상 등의 비판적이 점차 치고지고 있고, 특히 3차원 전산화 단층촬영이 매우 유용하게 이용되고 있다[5]. 그러나 호흡곤란 등으로 인해 불안정한 환자들 승Gesture의 경우에는 임상에서 바로 시행할 수 있는 심장 초음파가 추천되고 있으며, 환자의 상태가 허리타기 범위에서 전산화 단층촬영 등의 검사를 추가로 시행하는 것이 바람직할 것이다.

jadi가 심장 초음파는 동반 심장 기형의 진단도 가능하다므로, 모든 혈관질 환아에서 시행할 수 있는 것이 추천된다[3, 4]. 심장 기관지경 검사는 기관절 등을 통해 진단에 유용할 수 있지만, 그 외의 소견만으로는 정확히 알려지지 않은 약 레이 증상의 경우가 동반될 확률이 높으므로, 특히 기관절에 의한 수술을 시행하는 경우에는 가능하므로 심장 기관지 내시경 검사를 함께 시행하는 것이 추천된다[3, 4].

혈관질의 수술 방법에 있어서도 1945년 Gross가 최초로 이중 대동맥공 분리 수술을 시행한 이후로 많은 발전이 있었다. 각각의 해부학적 유형에 따라 다양한 수술 방법들이 소개되어 있으며, 저자들은 간접적으로 확인한 환자들은 크게 이중 대동맥공, 우측 대동맥공-동맥관 형태, 대동맥공 삼중으로 나눌 수 있었다.

폐동맥 습럼 결의 경우 Fiore 등[4]이 정중 홍굴 절개술을 이용한 접근 후 심내 바이패스를 시행하는 방법을 추천한 바 있으며, 본 논문에서도 4예 모두 정중 홍굴 절개술을 통해 접근하였고, 이 중 2예에서 심내 바이패스를 시행하였다. 수술 방법은 크게 좌측 좌측대동맥공 분리 후 좌측 대동맥공을 연결하는 방법과 기관절후 좌측 대동맥공 계관으로 이동시켜주는 방법이 있는데, 전자의 방법이 널리 사용되어, 후자는 불필요한 기관절 개선이 필요할 수 있다는 제한이 있기는 반면에 수술 후 이동 비용(kinking)이 있을 수 있고[8], 기관절 앞으로 이동시킨 좌측 대동맥공 계관을 압박할 수 있다는 단점이 있어 잘 시행되지 않는 다[9]. 저자들은 4예 모두에서 전자의 방법으로 수술하였으나, 동반된 기관절은 증상과 기관절경 검사 등의 결과를 바탕으로 수술 여부를 결정하게 되는데 고정 방법은 아직 논란의 대상으로 자가 심장용을 이용한 기관절형과
슬라이드 기관성혈관이 대표적인 방법이다. 자가 심낭을 이용한 기관성혈관은 기관 주위의 막리와 최소화하여 기관 축방의 혈류를 최대한 보존할 수 있으며, 방법이 비교적 간단하고, 필요시 주 기관지까지 시술할 수 있으며, 기관의 성장과 함께 자가 심낭도 함께 재생화되어 있다는 장점 이 있다. 하지만 자가 심낭 혈관의 혈관, 장기간의 기계호흡 및 통합성의 육아 형성 등의 단점이 있다. 슬라이드 기관성혈관의 가장 큰 장점은 이물질의 사용을 피할 수 있는 점이지만 자가 심낭 혈관의 이용한 기관 성형술과 마취가지로 통합성의 육아 형성, 장기간의 기계호흡 등의 단점이 있으며, 기관 혈착의 범위가 너무 넓거나 주 기관 지름 천배한 경우에는 시행할 수 없다는 제한이 있다.

본 논문에서는 수술 당시 기관 혈착이 심하지 않아 기관 성형술은 4에 모두에서 시행되지 않았다.

결 과 론

혈관술은 드문 질환이지만 수술적 교정이 필요한 질환 이므로, 원인이 명확하지 않은 반복적인 호흡기 증상을 동반한 환아에서는 반드시 혈관의 가능성을 의심해야 하며, 심초음파 등으로 확인을 해야 한다. 숨 진 및 숨 후의 전산화 단층촬영 및 기관지 내시경은 혈관술의 해부학적 구조 및 기도 혈착 등의 병변을 확인하여 치료 방향을 정하는데 유용하다.

참고 문헌

"국문 초록"

배경: 혈관결함은 대동맥류의 드문 기형으로 저자들이 12년 간 경험한 16예의 수술 결과를 정리하여 그 경험을 공유하고자 한다. 대상 및 방법: 1995년 11월부터 2007년 9월까지 혈관결함으로 수술을 받은 16명을 대상으로 하여 이중 대동맥류(n=5), 우측 대동맥류-동맥관 인대(n=7), 좌동맥 슬링(n=4)의 세 가지 그룹으로 분류하였다. 각 그룹의 수술 당시 평균 연령은 이중 대동맥류 그룹에서 5.7±5.5세, 우측 대동맥류-동맥관 인대 그룹에서 6.1±13.4세, 좌동맥 슬링 그룹에서 2.9±2.6세였다. 우측 대동맥류-동맥관 인대 그룹의 71% (n=5)에서 Kommerell 계열이 동반되어 있었다. 기관 혈착은 이중 대동맥류 그룹 중 2예(40%), 우측 대동맥류-동맥관 인대 그룹 중 2예(28.6%), 좌동맥 슬링 그룹 중 4예 (100%)에서 동반되어 있었다. 함께 전단된 심장 기형은 전체의 50% (n=8)였다. 결과: 사망한 예는 없었고, 중상 제발 및 문합부 혈착 등으로 재수술을 시행한 예도 없었다. 평균 재원 기간은 27.1±38.2일이었다. 결론: 혈관결함은 드문 질환지만 수술적 교정이 필요하므로, 원인이 명확하지 않은 환자증상이 반복될 경우에는 심초음파 등으로 반드시 확인해 보아야 하며, 수술 전후의 전산화 단층촬영 및 기관지 내시경은 기도 혈착 및 주변 해부학적 구조와의 관계 평가에 유용하게 이용할 수 있다.

중심 단어: 1. 기형
2. 대동맥류
3. 좌동맥류
4. 기관 혈착
5. 혈관결함