DOI QR코드

DOI QR Code

Influence of Growth Conditions on Plasmid DNA Production

  • Silva, Filomena (Centro de Investigacao em Ciencias da Saude, Universidade da Beira Interior) ;
  • Passarinha, Luis (Centro de Investigacao em Ciencias da Saude, Universidade da Beira Interior) ;
  • Sousa, Fani (Centro de Investigacao em Ciencias da Saude, Universidade da Beira Interior) ;
  • Queiroz, Joao A. (Centro de Investigacao em Ciencias da Saude, Universidade da Beira Interior) ;
  • Domingues, Fernanda C. (Centro de Investigacao em Ciencias da Saude, Universidade da Beira Interior)
  • Published : 2009.11.30

Abstract

The obtention of high yields of purified plasmid DNA is viewed as an essential issue to be considered towards efficient production of DNA vaccines and therapeutic plasmids. In this work, Escherichia coli $DH5\alpha$. bearing the pVAXI-LacZ plasmid was grown in a developed semi-defined medium at different temperatures and tryptone concentrations. Analysis of pDNA yields and E. coli morphology revealed that at higher temperatures (37 and $40^{\circ}C$), higher specific yields and E. coli filamentation were obtained. However, the best results were achieved when a lower tryptone concentration was used. This approach was shown to be a powerful tool to promote plasmid amplification, keeping the desirable plasmid structure, and favoring the attainment of quality. Our results suggest that by using tryptone alone as an amino acid source, pDNA amplification was improved and a specific yield of 20.43 mg pDNA/g dcw was achieved, proving that this strategy can improve pDNA yield even at a small scale.

Keywords

References

  1. Ackerley, D. F., Y. Barak, S. V. Lynch, J. Curtin, and A. Matin. 2006. Effect of chromate stress on Escherichia coli K-12. J. Bacteriol. 188: 3371-3381 https://doi.org/10.1128/JB.188.9.3371-3381.2006
  2. Anderson, W. F. 1998. Human gene therapy. Nature 392: 25-30 https://doi.org/10.1038/32058
  3. Cames, A., C. Hodgson, and J. Williams. 2004. Optimization of E. coli fermentation for plasmid DNA production. Mol. Ther. 9: S310
  4. Cames, A. E., C. P. Hodgson, and J. A Williams. 2006. Inducible Escherichia coli fermentation for increased plasmid DNA production. Biotechnol. Appl. Biochem. 45: 155-166 https://doi.org/10.1042/BA20050223
  5. Clewell, D. B. 1972. Nature of ColE1 plasmid replication in Escherichia coli in presence of chloramphenicol. J. Bacteriol. 110: 667-676
  6. Diogo, M. M., J. A. Queiroz, and D. M. Prazeres. 2003. Assessment of purity and quantification of plasmid DNA in process solutions using high-performance hydrophobic interaction chromatography. J. Chromatogr. A 998: 109-117 https://doi.org/10.1016/S0021-9673(03)00618-6
  7. Diogo, M. M., J. A Queiroz, and D. M. Prazeres. 2005. Chromatography of plasmid DNA. J. Chromatogr. A 1069: 3-22 https://doi.org/10.1016/j.chroma.2004.09.050
  8. Diogo, M. M., J. A. Queiroz, G. A. Monteiro, S. A. Martins, G. N. Ferreira, and D. M. Prazeres. 2000. Purification of a cystic fibrosis plasmid vector for gene therapy using hydrophobic interaction chromatography. Biotechnol. Bioeng. 68: 576-583 https://doi.org/10.1002/(SICI)1097-0290(20000605)68:5<576::AID-BIT13>3.0.CO;2-5
  9. Herman, A., A. Wegrzyn, and G. Wegrzyn. 1994. Combined effect of stringent or relaxed response, temperature and rom function on the replication of pUC plasmids in Escherichia coli. Acta Biochim. Pol. 41: 122-124
  10. Herweijer, H. and J. A. Wolff. 2003. Progress and prospects: Naked DNA gene transfer and therapy. Gene Ther. 10: 453-458 https://doi.org/10.1038/sj.gt.3301983
  11. Imlay, J. A. and S. Linn. 1987. Mutagenesis and stress responses induced in Escherichia coli by hydrogen peroxide. J. Bacteriol. 169: 2967-2976
  12. Kay, A, R. O'Kennedy, J. Ward, and E. Keshavarz-Moore. 2003. Impact of plasmid size on cellular oxygen demand in Escherichia coli. Biotechnol. Appl. Biochem. 38: 1-7 https://doi.org/10.1042/BA20030022
  13. Kelly, W. J. 2003. Perspectives on plasmid-based gene therapy: Challenges for the product and the process. Biotechnol. Appl. Biochem. 37: 219-223 https://doi.org/10.1042/BA20030033
  14. Kumar, P. K. R., H. E. Maschke, K. Friehs, and K. Schugerl. 1991. Strategies for improving plasmid stability in genetically modified bacteria in bioreactors. Trends Biotechnol. 9: 279-284 https://doi.org/10.1016/0167-7799(91)90090-5
  15. Li, Y., X. Y. Dong, and Y. Sun. 2005. High-speed chromatographic purification of plasmid DNA with a customized biporous hydrophobic adsorbent. Biochem. Eng. J. 27: 33-39 https://doi.org/10.1016/j.bej.2005.06.011
  16. Lahijani, R., G. Hulley, G. Soriano, N. A. Hom, and M. Marquet. 1996. High-yield production of pBR322-derived plasmids intended for human gene therapy by employing a temperature-controllable point mutation. Hum. Gene Ther. 7: 1971-1980 https://doi.org/10.1089/hum.1996.7.16-1971
  17. Levy, M. S., R. D. O'Kennedy, P. Ayazi-Shamlou, and P. Dunnill. 2000. Biochemical engineering approaches to the challenges of producing pure plasmid DNA. Trends Biotechnol. 18: 296-305 https://doi.org/10.1016/S0167-7799(00)01446-3
  18. Luo, D. and W.M. Saltzman. 2000. Enhancement of transfection by physical concentration of DNA at the cell surface. Nat. Biotechnol. 18: 893-895 https://doi.org/10.1038/78523
  19. Matsui, T., H. Sato, S. Sato, S. Mukataka, and J. Takahashi. 1990. Effects of nutritional conditions on plasmid stability and production of tryptophan synthase by a recombinant Escherichia coli. Agric. Biol. Chem. 54: 619-624 https://doi.org/10.1271/bbb1961.54.619
  20. Middaugh, C. R., R. K. Evans, D. L. Montgomery, and D. R. Casimiro. 1998. Analysis of plasmid DNA from a pharmaceutical perspective. J. Pharm. Sci. 87: 130-146 https://doi.org/10.1021/js970367a
  21. Neubauer, A, J. Soini, M. Bollok, M. Zenker, J. Sandqvist, J. Myllyharju, and P. Neubauer. 2007. Fermentation process for tetrameric human collagen prolyl 4-hydroxylase in Escherichia coli: Improvement by gene optimisation of the PDI/beta subunit and repeated addition of the inducer anhydrotetracycline. J. Biotechnol. 128: 308-321 https://doi.org/10.1016/j.jbiotec.2006.10.017
  22. O'Kennedy, R. D., C. Baldwin, and E. Keshavarz-Moore. 2000. Effects of growth medium selection on plasmid DNA production and initial processing steps. J. Biotechnol. 76: 175-183 https://doi.org/10.1016/S0168-1656(99)00187-X
  23. Ow, D. S., P. M. Nissom, R. Philp, S. K. W. Oh, and M. G S. Yap. 2006. Global transcriptional analysis of metabolic burden due to plasmid maintenance in Escherichia coli DH5$\alpha$ during batch fermentation. Enzyme Microb. Technol. 39: 391-398 https://doi.org/10.1016/j.enzmictec.2005.11.048
  24. Ozkan, P.,B. Sariyar, F.O. Utkur, U. Akman, and A. Hortacsu. 2005. Metabolic flux analysis of recombinant protein overproduction in Escherichia coli. Biochem. Eng. J. 22: 167-195 https://doi.org/10.1016/j.bej.2004.09.012
  25. Reinikainen, P., K. Korpela, V. Nissinen, J. Olkku, H. Soderlund, and P. Markkanen. 1989. Escherichia coli plasmid production in fermenter. Biotechnol. Bioeng. 33: 386-393 https://doi.org/10.1002/bit.260330403
  26. Ricci, J. C. D. and M. E. Hernandez. 2000. Plasmid effects on Escherichia coli metabolism. Crit. Rev. Biotechnol. 20: 79-108 https://doi.org/10.1080/07388550008984167
  27. Shamlou, P. A. 2003. Scaleable processes for the manufacture of therapeutic quantities of plasmid DNA Biotechnol. Appl. Biochem. 37: 207-218 https://doi.org/10.1042/BA20030011
  28. Sousa, F., S. Freitas, A. R. Azzoni,D. M. Prazeres, and J. Queiroz. 2006. Selective purification of supercoiled plasmid DNA from clarified cell lysates with a single histidine-agarose chromatography step. Biotechnol. Appl. Biochem. 45: 131-140 https://doi.org/10.1042/BA20060082
  29. Sousa, F., T. Matos, D. M. Prazeres, and J. A. Queiroz. 2008. Specific recognition of supercoiled plasmid DNA in arginine affmity chromatography. Anal. Biochem. 374: 432-434 https://doi.org/10.1016/j.ab.2007.11.005
  30. Stadler, J., R. Lemmens, and T. Nyhammar. 2004. Plasmid DNA purification. J. Gene Med. 6: S54-S66 https://doi.org/10.1002/jgm.512
  31. Summers, D. K. 1991. The kinetics of plasmid loss. Trends Biotechnol. 9: 273-278 https://doi.org/10.1016/0167-7799(91)90089-Z
  32. Takeuchi, S., W. R. DiLuzio, D. B. Weibel, and G. M. Whitesides. 2005. Controlling the shape of filamentous cells of Escherichia coli. Nano Lett. 5: 1819-1823 https://doi.org/10.1021/nl0507360
  33. Wang, Z., L. Xiang, J. Shao, and G. Wegrzyn. 2007. Adenosine monophosphate-induced amplification of ColE1 plasmid DNA in Escherichia coli. Plasmid 57: 265-274 https://doi.org/10.1016/j.plasmid.2006.10.002
  34. Wang, Z. L., G. W. Le, Y. H. Shi, and G. Wegrzyn. 2001. Medium design for plasmid DNA production based on stoichiometric model. Process Biochem. 36: 1085-1093 https://doi.org/10.1016/S0032-9592(01)00149-2
  35. Wegrzyn, G. 1999. Replication of plasmids during bacterial response to amino acid starvation. Plasmid 41: 1-16 https://doi.org/10.1006/plas.1998.1377
  36. Wrobel, B. and G. Wegrzyn. 1997. Amplification of pSC101 replicons in Escherichia coli during amino acid limitation. J. Biotechnol. 58: 205-208 https://doi.org/10.1016/S0168-1656(97)00148-X
  37. Wrobel, B. and G. Wegrzyn. 1997. Differential amplification efficiency of pMB1 and p15A (ColE1-type) replicons in Escherichia coli stringent and relaxed strains starved for particular amino acids. Microbiol. Res. 152: 251-255 https://doi.org/10.1016/S0944-5013(97)80036-5
  38. Wrobel, B. and G. Wegrzyn. 1997. Replication and amplification of lambda plasmids in Escherichia coli during amino acid starvation and limitation. FEMS Microbiol. Lett. 153: 151-157 https://doi.org/10.1016/S0378-1097(97)00250-4
  39. Xu, Z. N., W. H. Shen, H. Chen, and P. L. Cen. 2005. Effects of medium composition on the production of plasmid DNA vector potentially for human gene therapy. J. Zhejiang Univ. Sci. B 6: 396-400
  40. Zabriskie, D. W. and E. J. Arcuri. 1986. Factors influencing productivity of fermentations employing recombinant microorganisms. Enzyme Microb. Technol. 8: 706-717 https://doi.org/10.1016/0141-0229(86)90157-2

Cited by

  1. The Use of DRAQ5 to Monitor Intracellular DNA in Escherichia coli by Flow Cytometry vol.20, pp.4, 2009, https://doi.org/10.1007/s10895-010-0636-y
  2. A novel prokaryotic expression system for biosynthesis of recombinant human membrane-bound catechol-O-methyltransferase vol.156, pp.2, 2009, https://doi.org/10.1016/j.jbiotec.2011.08.022
  3. Rational engineering of Escherichia coli strains for plasmid biopharmaceutical manufacturing vol.7, pp.2, 2009, https://doi.org/10.1002/biot.201100062
  4. Plasmid DNA fermentation strategies: influence on plasmid stability and cell physiology vol.93, pp.6, 2012, https://doi.org/10.1007/s00253-011-3668-6
  5. Nucleic acid and protein extraction from electropermeabilized E. coli cells on a microfluidic chip vol.138, pp.24, 2009, https://doi.org/10.1039/c3an01576a
  6. Improved Minicircle DNA Biosynthesis for Gene Therapy Applications vol.25, pp.2, 2009, https://doi.org/10.1089/hgtb.2013.020
  7. Resveratrol production in bioreactor: Assessment of cell physiological states and plasmid segregational stability vol.5, pp.None, 2009, https://doi.org/10.1016/j.btre.2014.10.008
  8. Minicircle DNA vectors for gene therapy: advances and applications vol.15, pp.3, 2009, https://doi.org/10.1517/14712598.2015.996544
  9. Gram-scale production of plasmid pUDK-HGF with current good manufacturing practices for gene therapy of critical limb ischemia vol.46, pp.8, 2009, https://doi.org/10.1080/10826068.2016.1141302
  10. Recombinant biosynthesis of bacterial cellulose in genetically modified Escherichia coli vol.41, pp.2, 2009, https://doi.org/10.1007/s00449-017-1864-1
  11. Improved Thermotolerance of Genome-ReducedPseudomonas putidaEM42 Enables Effective Functioning of the PL/cI857 System vol.14, pp.1, 2019, https://doi.org/10.1002/biot.201800483
  12. High Kanamycin Concentration as Another Stress Factor Additional to Temperature to Increase pDNA Production in E. coli DH5α Batch and Fed-Batch Cultures vol.7, pp.12, 2009, https://doi.org/10.3390/microorganisms7120711
  13. Effect of Tryptone Concentration on Cyclodextrin Glucanotranferase (CGTase) Excretion and Cell Lysis of Immobilized Recombinant Escherichia coli vol.991, pp.None, 2009, https://doi.org/10.1088/1757-899x/991/1/012053