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3D Shape Descriptor with Interatomic Distance for Screening the
Molecular Database

Jaeho Lee* and JoonYoung Park**

ABSTRACT

In the computational molecular analysis, 3D structural comparison for protein scarching plays a very
important role. As protein databases have been grown rapidly in size. exhauvstive search methods can-
not provide satistactory performance. Because exhaustive search methods try 10 handle the structure of
protein by using sphere set which is converted from aloms sel. the similarity calculation aboul two
sphere sets is very expensive. Instcad, the (ilter-and-refine paradigm offers an efficient altemative
dalabase search without compromising he accuracy of the answers. In recent. a very fast algorithm
based on the intcr-atomic distance has been suggested by Ballester and Richard. Since they adopred the
moments of distribution with inter-atomic distance between atoms which are rotational invariant, they
can eliminate the structure alignment and orientation fix process and perform the searching faster than
previous methods. In this paper. we proposc a new 3D shape descriptor. Tt has propertics of the gen-
eral shape distribution and useful property in screening the molecular database. We show some experi-

mental results for the validity of our methed.

Key words : molecule database, shape descriptor, shape similarity, inter-atomic distance

1. Introduction

The geometry of biological systems, such as the
geometry of molecules, is a very important consi-
deration when investigating the functions of thesc
systems. Molecules such as protein, DNA, and RNA
consist of aloms. 3D structural comparison and
structural database scarching of proteins play very
important roles. For example, researchers may want
1o scarch an unknown protein against a database of
functionally annotated proteins to infer its functions
from those found to be structurally similar to it, Tn
general, structural database searching has many
applications in the area of drug discovery. It can he
used (o verify the 31 structure of a target drug which

5|9l ETShE TR YA EATA
*W M), 554189 TR e A A 5 25k}
- =555 2008, 03. 21
- =EAY: 2009, 09. 01
- AATekE S 2000, 10. 08

404

is modeled by structural prediction', It can also be
used to identify the similar fold structure and families
unique to pathogenic organisms to select good drug
targets'”, etc.

An additional advantage of searching a database
for molccules with similar shape in that no spcci-
fication of chemical structure, such as types of atoms
or their bond arrangement, is made and therefore
similarly shaped molecules, but with different chernical
scaftolds from the template, can be found. Such
ability, known as scaflold hopping, is very crucial'®l,
Techniques for scaffold hopping can be used to hop
molecules with different scaffolds when leading
compound have desirable features such as intractable
chemistry or poor pharmacological praperties?,

In recent, advances in molecular structure analysis
methods such as MNR and X-ray crystallography
have been developed and contributed to a significant
increase in the number of known protein 3D struc-
tures. Especially, the Protein Structure Data Bank
(PDB) storcs over 45,000 structurcs'™. When the size
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of the database is small, the exhaustive searching of
the dutabase by comparing the query structure against
cach and cvery structure in the database was done
with acceptable performance. However, tfor large
databascs with tens of thousands of structures. such
an cxhaustive scarching approach no longer provides
a satisfactory response time. As such, extensive
research has gone into developing faster searching
algorithms!"*!,

Generally, mcasuring similarity and classifving
proteins in a database require experts that have
extensive knowledge of molecular biology domain.
This is due to the fuct that some measuring methods
such as SCOP, DALI and FSSP, arc usually based on
a particular biological conception of  structural
similarity ol proteins. Thesc are based on sequence-
alignment scarches. Although they vield an accurate
searching, they are very time consuming!'?.

Thus, in recent, the geomelric structure bascd
model similarity calculation methods of protein have
been developed. Some rescarchers show that appro-
aching similarity of protcin by its geometry is pro-
misingl,

Unforlunately, we cannot currently reach the full
potential of molecular shape comparison methads in
these applications because of several shape compari-
son methods in these applications caused by several
major problems like the optimal orientation problent
for {inding and capturing the shape adequately. Many
methods using molecular shape as the patiern to
recognize require previous alignment process of the
molecules being compared. which is an additional
source of difficulty that may lead (o suboptimal
molecular overlap and thus to an inaccurate similar
score. Additionally. it is needed to understand how
well molecular shapes are being deseribed and thus
compared. Lspecially, & small inaccuracy in the
description of shape will lcad to many similar com-
pounds being undetected, given the very large size of
interesting molecular databases.

The rest of this paper is organized as the following,
In Section 2, we describe some related works done
by previous researchers. In Section 3, we present our
inter-atomic distance based shape descriptor and its
implementation, In Scction 4, we discuss the experi-
mental result and some highlighted observations.
Scction 6 concludes the paper.

2. Molecular Shape Comparison

2.1 Orientation fix method

In general, these categorical methods take three
sleps. They are normalization, spatial partitions and
comparing step. Scveral issues such as normalization,

spatial partitions and geometric features were address-
ed by many rescarcherst').

Normalization step is 1o determine the full normali-
7ed pose or semi-normalized pose of molecules. The
semi-nomalized pose is obtained by transforming
them such that their center of mass is in the origin
and scaling them to a certain unit of bounding box.
The tull-normalized pose is aimed to preserve the
object invariant to translation, scaling, rotation and
mirroring. Translation and scaling invariance are
casily obtained by the same way as in the semi-
normalized form.

(a) (b) (¢}

Fig. 1. Some spatial partitions {a) 3D-ecompositions, (b}
3D (rid. (¢) Spherical Wedge.

However, rotational invariance is obtained by the
following way. First employ Principal Component
Analysis (PCA} to the objects in order to get the
principal axis. Second, rotate them such that first
major axis is adjacent to x-axis, the second axis to y-
axis, and the third to z-axis respectively, Mirroring
invariance is obtained by flipping the objects such
that the larger part is on the positive side.

Spatial partition is (o caplure the shape features.
Some spatial partitions arc shown in Fig. 1. Fig. 1(a)
shows the case of the 31 decomposilion which
cnables to count the vertices of the 3T model in cach
spherical sector, Fig. 1(b) shows the 3D grid for
counting the vertex of the 3D modcl. Fig. I{c) shows
the spherical wedge for counting vertices of the 3D
model in each wedge like cone.,

Ankerst suggested the method which extracts geo-
metry of the molecules and maps into the 3D shape
histogram, using (hree options of 3D decompesition
techniques'!, Each decomposition model is the ball
{shell). sector and combination of both (spider-web).
Since the cost of PCA is expensive and oplimal
orientation cannot be always guaranieed. the orien-
tation dependent methods sutter from unintended
loss for the ideal result.

2.2 Orientation free method
Many researchers suggested some methods which
take the strategy by using the position ot the mole-
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cule which s orientation independent. As we will
discuss in this section, Yeh et al. suggested the
method with the Light Field Descriptor!’”. In this
method, each model is rotated several times in order
to obtain its projection image from somc camera
positions. Therefore, captured features are composed
of several features of 2D shape and contour of
projection images, i.¢. which arc called as Zenrike
moments. After combining these features, they
calculate the distance of features by using Z, norm.
This norm is called as the Manhattan distance which
represents the dislance between two vectors as
shown in Eq. (1). The dissimilarity of two proteins is
assessed by using this norm. Here, p and ¢ are the
feature vectors.

dM(mhuMun(p’ q) = (Z:; olpc' - q:l} ( | )

This method needs to generate an intermediate
representatien, i.e. 2I) images of 3D protein, before
extracting the features, It causes a hard calculation
and the quality of the method depends on the number
of camera positions for the projection. [n case of the
protein of many atoms, the projected image cannot
easily guarantee the exact similarity assessmenl because
they do not use exact distance between atoms'™,

Inter-atomic distance is defined as the Euclidean
distance between two atoms. Inter-atomic distance
based shape descriptor gives some advantages, At
first, the distribution generated from inter-atomic
distances reflects the shape of protein. In general, the
shape of a molecule is uniquely determined by the
relative position of its atoms®'*), In this way, the
molecule is regarded as a group of atoms, instead of
its more conventional treatment as a solid body. The
relative position of atoms in the molecule is in turn
completely determined by the set of all inter-atomic
distances. This is a convenient representation, which
directly eliminates any need for alignment or trans-
lation, as this set of distances is independent of
molecular orientation or position. However, the set of
all inter-atomic distances contains more information
that is needed to describe the shape of the molecute
accurately. This is because thc values of these dis-
tances are heavily constrained by the forces that hold
the atoms together and thus using less information
would still provide us with the shape discrimination
power necessary to distinguish between molecules.
Nevertheless, it is not widely used in molecular
shape comparison bccause the calculation of the set
of all inter-atomic distances is heavy as shown in
Fig. 2.

1f the given molecule has » positions which repre-
sent the center of each atom, the number of all inter-
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atomic distance pair is #x(n—1)2. Hence, we need to
develop an method for feature capturing with morc
simplified combination of inter-atomic distance pairs.
Some researchers try to solve this problem using
histogram composed of distance between each atom.
However, histogram calculation can suffer from well-
known limitations. Under the very large databases, it
is difficult to find the bin size suitable for all mole-
cules, It does not meet the requirement of relatively
large storage and computing power""\.

)

Fig. 2. Molecule, atom positions and all inter-atomic
distance pairs (a) molecule, (b) atom positions, (c)
all inter-atomic distance pairs.
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(a)
Fig. 3. Molecule. (a) the set of atoms, (b) four feature
capluring locations and their relationship.

2.3 Ultrafast shape recognition method

To solve the problem mentioned above, Ballester
and Richard adopted the distribution of the inter-
atomic distance with only four [eature capturing
positions. This algorithm is called as USR (Ultrafast
Shape Recognition). This method is very fast. In this
method, they use the first, second and third moments
of the distributions for all atomic distances in order
to characterize them as a way to encade the mole-
cular shape'®. Each moment is calculated by Eq. (2),
(3) and {4). In statistics, the first moments of the
given data set is the mean which represents the
central tendency as shown in Eq. (2).

The second moment is the variance which repre-
sents the dispersion as shown in Eq. (3). The third
moment is the skewness which represents the asym-
metric property of the given distribution as shown in
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Eq. {4). Here, x, is the data.

= Z i (2)
$=3" (x-%)’ 3)
1 b (.Y..-—.E )3

TR A “
It is supported by a theorem from statistics, which
prove that a distribution is completely determined by
its moments'"'""). They suggest very fast. and efficient
mcthod using four types of inter-atomic distance
based distributions and their moments. In their method,
they define the set of all inter-atomic distances from
tour molecular locations, the centroid of all atoms
{mc), the closest atom from mc (ca), the farthest
atom from mc ( fu) and the farthest atom from e ( )
arc the locations respectively. These locations repre-
sent the center of the molecule and its extremes, and
thus are well separated as shown in Fig, 3,
Four feature capturing locations are delined as
follows:
Definition 1 ; me, The conter location of all atoms
ol given protein p.
Definition 2 : ca, The location of the atom with the
minimum distance from me.
Definition 3 : fu, The location of the alom with the
maximum distance from me.
Definition 4 : ff; The location of the atom with the
maximum distance from fa.

They try to capture the distribution of inter-atomic
distance from the four locations to other atoms
respectively. Fig. 4 shows the process of generating
the distribution.
Four distributions are as follows.
1. {d"™)¥=) corresponds to the Fig. 4(a)
¥ .

2. {d™ ;=\ corresponds to the Fig. 4(b)
N .

3. by, corresponds to the Fig. 4(c)

4. {d"’f}-}v:l cotresponds to the Fig, 4(d)

where & is the number of atom, &, &, d* and a7

are the Luclidean distances from mc, ca, fa and ffto
each atom, as shown in Lg. (5). Here, p and ¢ arc the
{eature vectors.

. a 12 -
dEur:a'.fJe‘an(p.- (-f) = (Z?z [|Ipi_'qri ) (3)

By using these four distributions, 12 shape descriptors
are defined.
First descriptor (z)) cotresponds to the first
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moment of the distribution {&{“};_,. This value
means the mean atomic distance to the geometrical
center and thus it provides an estimate of the size of
the molecules.

Second deecnptor ( ,u« ) corresponds to the second
moment of {d7<}5_,. This value is the variance of
these atornic distances from the centroid and hence it
is related to how (,Ompd(,l the molecule is.

Third deqcnptor (5 Corre%pond% io the third
moment of {/}}}_,. This value is the skewness ol
the same distribution, which estimates its asymmetry
and thus whether the atoms are near or far from the
mean atomic position from the cmtrmd

Similarly, (uﬁ") (ui") {UL;") (M 3l (/-fw )2 (u’;") s

( ,uf'y) ( ,ué' ) and (;.g] are caleulated from the distribu-

f A
tions of (43"} i _ v {edy' bizy and {2 )

After ail 12 shape descriptors in a given molecule
are calculated, they are assembled in an associated
vector which is uniquely defined as follows.

-
af
e e me

= G a1 gl g )

llere, M spans a 12-dimensional molecular shape
space. Now, it enables the similarity calculation
between a given query molecule and each protein in
a database. In this process, the normalized score
function is used to quantify the degree of similarity
between molecules. These values are assessed by
using the inverse function of the distance between
two veclors composed ol twelve f(loat values
calculated from cach molecule.

The inverse tunction of the translated and scaled

fe) (d)

Fig. 4. The four distributions of intcr-atomic distance from
four feature capturing locations to other atoms.
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Munhattan distance between both vectors of shape
descriptors can gunarantee the stuble spesd. This
function returns a value in the range of (0, 1]. Here,
the value ‘1’ corresponds to maximum similarity and
the value near ‘0’ corresponds to near minimum
similarity as shown in Eq. (6).

- ' (0. 1] 6)

L2 M- a]

Here, ¢ and ¢ represent query molecule and cach
molecule being compared in the database respectively.
This method is reported to be extremely fast. The
main reason for such cfficiency is that the defined
shape descriptors only require the caiculation of 4
distances aiong with a total of 12 moments of the
resulting four distributions. Once, M’ is calculated,
the comparison calculation cost takes (V). Since
the shape information of each molecule is
independently encoded a vector of shape descriplor,
which 1s consistent with the status as an intrinsic
geometrical property of the molecule, they can speed
up the screening process, as cross-calculations
between the query and the considered molecules are
avoided. This method is faster than other methods
which usc the calcnlation of molecular surface or
molecular volume.

Syt

3. Proposed Algorithm

3.1 Problem definition

In Ballester and Richard’s method, we observed
some limitations. First, their method using four
feature capturing positions does not always guarantec
the desirable matching. Second, the method can
compare only representative feature vector in terms
of moments of four inter-atomic distance distributions,
Thus it cannot give any scale information between
arbitrary two feature vectors suggested by Ballester
and Richard!".

In this paper, we locus an second problem.
Generally, the molecular shape search system
presents the similarity rcsult as well as the inter-
relationship n overall DB index structurc between
two molecules. It is important to speed up in the finer
comparing process afler scrocning process in molecular
database. Thereforc, our problem definition can be
defined as [ollows:

Given the query protein ¢, and the target protein ¢,
what is the effective shape descriptor for calculating
the similarity measure between ¢ and 7 in view of
implementation time and the accuracy. What is the
natural cxtension of USR method in view of the
database index structure?

F=CAD/CAMESE] =& A 143 4635 20008 129

Here, ¢ and ¢ are point clouds in format of PDB
(Protein Data Bank). The point cloud is the
collection of the center for each atom.

g={xuy,2), 5y 22, - s (Kimp Yo 2}
1= {(X], ,‘;13 Zl)'- (XZ) ,y'."l Z'_)), LR ] (xru yn: Zﬂ)} .

Here, m and # are the numbers of atoms in g and ¢.

We use the moment vector method like Ballester
and Richard’s method. First, we get the four
distributions using four feature capturing positions in
seetion 2.3.

3.2 3D shape descriptor for protein with natural
extension of USR method

3.2.1 3D shape descriptor

For the purpose of acquiring the natural extension
of USR method in view of database index structures,
we analyze the USR generation process. USR feature
vector generation steps are as follows.

Procedure 1 USR feature vector generation step
Inpur : PDB file with x, v, z coordinate which
represents the center point of each atom
output : 12 moments of four inter-atomic distances
with four feature capturing positions
Step | Find mec from xyz using average {x, ¥, z)
Step 2 Find ca using min distance betwecn me and
other atoms
Step 3 Find fa using max distance between mc and
other atoms
Step 4 Find f# using max distance between fu and
other atoms
Step 5 {7} {d} {d¥}, and {<} are generated
Step 6 Calculate the moments 1* (AVG), 2™
(VAR), and 3" (SKEW)
Step 7 Return the feature vector (ml. m2, ... m12)

Above steps are naturally extended into the below
procedure without the loss of generality.

Procedure 2 Proposed ‘M3T)’ feature vector

generation slep

fnput : PDB file with x, ¥, z coordinate which

means the center of each atom

output - n, vl and #2, 12 moments of four inter-

atomic distance with four feature capturing
positions

Step | Find mic from xyz using average (x, ), z)

n is caleulated after step 1 is done.

Step 2 Find ca using min distance between mc and
other atoms. Iere, this max distance is
defined as »1. This value means the radius
of the inscribed sphere in R,

Step 3 Find for using max distance hetween mzc and
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Fig. 5. ‘The etfect of #, the number of atoms (a) 116D.pdb
(b) Insulin.pdb, () 1AA7.pdb. (&) 1CID.pdb.

other atoms. Here, this max distance is
defined as »2. This value means the radius
#2 is the circumscribed sphere in R

Step 4 Find ff using max distance between fa and
other atoms.

Step 5 4™} {d} (&}, and ("} are generated

Step 6 Calculate each moments 1" (AVG), 2™
(VAR), and 3™ (SKL'W)

Step 7 Return the leature vector (n, »1, #2, ml,
m2,..., ml2).

3.2.2 Two speedup factors

In the procedure 2, we can find the interesting
properties. First, we can easily acquire ». the number
of aloms. This value can be used to index structure
for retrieving the molecular database as a starting
point as shown in ¥ig. 5.

Second, we can compute 1 and +2 easily, the radii
ol bounding spheres respectively as shown in Fig, 6.
Using 1 and 72, we can deal with smaller sets with
similar proteins, Lach term shows the difterentiation
power, First, our shape descriptor rcpresents the
important geometrical structurc in terms of 71 and r2.

In Fig. 6, #1 means the distance between me and
ca. This information shows the given protein’s inside
structure as shown in Fig. 6(d). If this value is big,
then the given protein is likely 1o have a hollowed
part as shown in Fig. 7(a).

In Fig. 6, #¥2 mcans the distance between mc and fa
as shown in Fig. 6(c). This implics the volume size
of the given protein. In USR, since they only
comparc the molecules by using 19, 2™ and 3"
moments of four distributions with four feamre
capluring positions, the original shape’s gcometry

Fig. 6. 'The r1 and #2 as their geometric view and shape
descriptor (a) protein 2LAL, (b) bounding sphere
with #1, (c) bounding sphere with +2, {d) bounding
spheres with 1 and #2.

Fig. 7. The eftect of 1 and »2 (a) Uckminsterfullerene, (b)
Fructose.

and topological information are unknown.
llowever, if the number of atoms of two proteins is
considerably different, we think two shapes are
considerably ditterent structure and it is reasonable.
Finally, our [eature vector from the proposed 3D
moleeular shape descriptor is as follows.

M3D — 4 n, { number of atoms
rl. i dist (me, ca)
2. i dist (me, fa)

A 1% moments of K
2 moments of K
i 3% maments of K

ml, md, m7, m0,
m2. md, m8, mll,
m3, me, m9, ml2,

1
1]

Here, 1 is acquired by accounting the atom numbcr
from PDB file. K means four disiributions, {{d™}
() 19y, () ). rl and #2 is made up of dist (me,
ca) and dist (me. fu) is calculated by Eq. (§) in
respectively. These valucs are taken from Procedure
2.

SCAD,//CAMEE =54 A4 e 20008 12¢
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3.3 Similarity measure

Our similarity measure is composed of three parts.
They are the number of atoms in the protein, #, radii
of two bounding sphere »1 and 2, and the original
USR, ml, ..., m12 respectively. These three parts
have each role for screcning the molecular database.

3.3.1 The number of atoms

Quite different number of atotns in protein reflects
quite different shape of the protein as shown in Fig. 5.

It is somewhat vague measurc in view of cxact
shape matching. However, this measure filters the
potentially unmatched proteins. If a new entry
protein p has 7 number of atoms, then our algorithm
start to retrieve the exact number of atoms, 7. As
shown in Fig. 8, it lessens the problem space by
skipping comparisons between proteins with a huge
difference in the number of atoms, The criteria for
the number of atoms are uscr specific or statistically
assigned value by using Liq. (7).

log,glr:— 1| > &

S,={ NG

otherwisc goto S,

Here, n. and », are the number of query protein ¢
and target proteins 7. If the value of S, is larger than
& (=3.0), then the number of atoms between two
proteins is larger than 1,000, where £ is the user
assigned value.

This rule with S, can reduce the size of protein
screening becausc of the controlling of the user
defined value, k. For the determination of the value £,
we test the rule 1 with various & under (est set which
is shown in table 1. In the case of k=100, £=1,000
and £=10,000, we can get 14, 102 and 308 protcins
as the similar proteins under given query proleins.
Although, we don’t take the optimal 4, we took
k=1,000 in practical view.

q1vor

o

I3cro tirng

Proteins  #;;6p Unsulin

# of Atom 243 8 829 1,856 2,208

Fig. 8. », as a starting point of the screcning process.

3.3.2 Two bounding spheres

Afier assessing # as the starting point of screening
process with Eq. (7), we calculatc the Eq. {8) which
is the similarity measure of simplified volumetric

SHRCAD/CAMEHE] =23 A 143 4635 2000 129

Fig. 9. The focused set generation using # with S, and
shape filtering with S, and exact shape matching
with .

structure which 1s formulated with 1 and #2.

s, = 1; (0, 1] ()
1+ EZ; l|r§"—r7’

Here, the similarity S; is the measurement which
reflects the bounding sphere with #1 and bounding
sphere with »2 as described in section 3.2.2. [t can be
decomposed form about r1 and #2 in respectively.
Then, we can measure the similarity effects in »1 and
12 by Eq. (9) and Eq. {10) as follows:

S = —— (0,1 ©)
S P
1
S 3= — e (0, 1] (10)
7oA

In section 4.2, we show the similarity value pairs
<Sars Sy <820 S, and < S5, S, in Table 3 and
Fig. 11. Here, S, is the similarity measure which
represents 12 moments, <ml, ... m12> by using Eq.

(6).

3.3.3 Shape filtering with S, and S,

After two steps, the search space to proceed is
extremely shrinked as shown in Fig. 9 because of the
effect of two similarity measures as shown in Eq. (7)
and Lq. (8).

3.3.4 Shape match using S,

Then, we finally apply USR’s 12 moments based
similarity function as shawn in Eq. (6). It takes a
similarity calculation process between a given query
muolecule and each protein in a database. It uses the
notmalized score function to quantify the degree of
similarity between molecules like USR.

Thus, they use the inverse of the (ranslated and
scaled Manbattan distance between both vectars of
shape descriptors, where a value of 1 carrespands to
maximum similarity and 0 to minimum similarity as
shown in Eq. (6).
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4. Experimental Results

4.1 Experimental data

Table 1 shows the experimental data. These files
were downloaded lrom RCSB (Research Collaboratory
for Structural Bioinformatics) Profein Data Bank
(www.pdb.org) and Lig. 10 shows their PDB files.
These models were rendered by using the OpenGL.
Our shape descriptor and similarity calculation
niethod were developed under the Microsoft visual
studio 2005 and € - - language.

Table 1. Input PDB files to the proposed algorithm

PDB file name | # of atoms File size (KB)
116D.pdb 243 44
1VQLpdb 811 115
insulin.pdb 829 160
1A8Gpdb 1,527 174
3CRO.pdb 1.850 214
ITNR.pdb 2,208 224
2BBM.pdb 2,700 258
1AHS.pdb 2.842 278
1AAW.pdb 3.069 285
1AA7 pdb 2,980 288
1B9T pdb 3,040 300
1A34 . pdb 2,945 325
1A3R pdb 3,455 329
2LAL.pdb 3.550 332
1A6C.pdb 406 366
1B44 pdb 4.186 378
TAYM.pdb 6,412 618
1CID.pdb 8502 763
crystall.pdb 23,978 1,593
fluid.pdb 26,849 2,019

4.2 Feature vector as shape descriptor of each
proteins

Table 2 shows the converted feawre vector
generated from our method. Bach protein in the
given database is evaluated by using the similarity
measures composed of these vectors, As described in
scection 3, three similarity measures were used.

To validate the proposed similarity measures, at
first, we test the pair-wise comparison by using #, r1-
#2 and m1..m|2 values.

We test the two similarity results, which are results
by using the #1 and +2 based measurc and by using
USR measure. To acquire the statistical significance,
we use the Pearson product-moment correlation
coefficient » which is a common measure of the
correlation {linear dependence) between two variables
X and Y as shown in Eq. (8). Here, we sct X as the
similarity result by using Eq. (5) and ¥ as the
similarity result by using Eq. (6). [t means the
similarity belween two given array sets which are
composed of cach similarity values.

r

A(ZXY)— (LX)EY)
JOEX - (EX) )R - (SN

e[-1,11 9)

The Pearson’s # reflects only numerical values of
the given two data sets. [n gencral, it is widely used
to measure the pair-wise similarity of two data sets ',

We can get the results with Pearson's # as shown in
Table 3. Each three measures are evaluated in Table
3. Herc, <1 &m12> means the pearson’s correlation
coefficient » in given two sets trom r1’s similarity in
Eq. (9) and m12’s similarity S, in LEg. (6). The
average of <r1&m 12> marked 53.7%. the average of
<P2&m12> and <rl, r2&m12> marked 88.6% and
92.9% in respectively.

These results provide the strong correlation
berween result of Fgq. (6) and Eq. (8). 1t can be
analyzed that our <71, 2 based shapc descriptor by
using the similarity measure, S» as shown in Eq. (8)
in the section 3.3.2 is well adjusted in shape filicring
before S,, process. It can be also validated to draw

k) M (m) (n) (0)

(9] @ (r) (s) {x)
Fig. 10. PDB models. Each PDB file name is described in Table | and is sorted by using # of atorns.
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Tabie 2. The resulling tcature vectors as name of M3 descriptor by using (he proposed algorithrm

M312 Descriptor n Pl | 2 [ ml ] a2 [ w3 | md o omS | w6 | w7 o m8 | mS 1m0 mll | ml2
116D_usr dguixt | 243 [ 40 [ 189 [1te[ 104 ] 02 [11.8]21.11-01121.0] 60.9 [-0.8:204; 77.7 | -06
IVQUusr_dgutxt | BI1 [1.7]27.2]136] 264 ] 0.4 [13.6129.4] 0.5 [ 2927 97,6 [ -04 [285| 90.9 [ -0.2
insulin_usr_dguaxt | 820 [ 2.0 [228[129[19.9] 0.0 [13.0}205] 0.0 {25.0 [ 81.8 [-0.2 1243 ] 985 | -0.1
1A8G use degutse | 1,527 105 (334 166]303 {01 [166]3167 00 1356 ] 1548]-021336{147.11-02
3CRO_usr_dgutxt | 1,856 |32 [353 184 441 0.1 [186]476[ 02 |37.812068]-0.1 [354205.7} 0.1
JTNR usr_dgutxt | 2208 [ 10 [s0.1[229]915] 0.4 [2201 932 0.5 [53.27392.2[-061385]31L.7| 04
2BBM_ usr_dguixt | 2,700 | 1.0 [32.0 [ 162287 ] 0.0 [ 1622881 0.0 [3481101.2]-03[303]113.4;-02
TAHS_usr_dgutxt | 2,841 [ 46328190 [313]-0.2]196134.4 ] 0.2[36.71120.7]-03 {34.1]129.5}-04
1A34_usr dguixt | 2945 | 0.5 {442 [190[72.7] 0.6 | 192] 7241 0.6 {459 ]283.0| -0.539.5{276.8: 0.2
TAAT usr_dguixe | 2980 | 1.9 [349 19542703 [195]44.0[ 0213782055 0.0 1353 1202.2| 0.0
[BYT usr dgutst | 3,040 | 1.7 [37.0 [ 188303 [-0.3 {189 30.6 | -03 1 40.1 [ 144.0(-0.6 [30.8]115.4] 0.l
VAAW _usr_dgutxt | 3,069 | 1.8 | 41.8[206[45.0] 0.0 [ 206} 463} 0.0 §46.1 [ 91.5 | -1.2:132.61109.4] 0.0
1A3R usr_dgunst | 3455 | 3.4 [43.5 [241(550] 0.0 [243] 5821 0.0 1463 [381.8|-0.2{44413784 0.1
2LAL_usr dgutxe | 3,550 [ 20 [44.8 (235706 [ 0.0 [237] 720100 {410 /3882 0.1 147.2[285.2| 0.0
IA6C usr dgutxt | 4016 [ 19553 ]250]914 [ 02 [25.1]922] 02 | 581 §398.4[-05[52.5(296.4 ] 03
1B44_usr_dgutxt | 4,186 | 64 | 362224361 [ 0.4[230]496[-02{40.7}1892]-031369|172.0|-0.2
IAYM usr_dguixt | 6412 | 1.7 [2203]30.8(710.7] 59 [30.917116] 5.9 [227.6,10723 -4.7 [ 51.5 10882} 4.2
1CID_usr_dgumxt | 8,502 | 62 ] 47.529.0] 60.2 [ 0.529.4] 72.5 | 0.4 541 [235.8] -0.3}53.11237.51 0.5
crystall usr_dgu.tst | 3978 [ 25608 [395] 999 07[39511019]0.7]69.9 14698 -04 |08.8]488.7} 0.4
Muid_usr dguixt | 6849 [ 19 [67.2 3871256 -0.2[38.8]1264] 02 | 74.8 [549.6 [ -0.3 | 723 [550.71-0.3

Table 3. The result of the Pearson’s » for calculating
comrelations between the similarity results calcutated
by wsing Eq. (6) and Eq. (8)

Protein Pearson's 7
iD <rl&ml2> | <r2&ml2> |<rl,r2&mi2>

116D 0.800 0,987 0.975
1VQI 0366 0.981 0.955
Insu 0.393 0.982 0.964
1ARG 0.436 0.779 0.973
3CRO 0.766 1,775 0.864
TINR 0.341 0.975 0.966
2BBM 0.577 0.843 0.976
1AHS 0.863 0.775 1.912
1A34 0,714 0.764 0.878
1AAT 0,367 0.790 0.658
1BOT 0.373 0,843 0.881
TAAW 0.345 0.921 0.904
1A3R 0,706 0.806 (1.988
2LAL 0.398 0.809 (.863
1AG6C 0.333 0.985 0967
1B44 0.768 ’> 0.773 0.962
TAYM 0.320 1.000 1.000
1CID 0.753 6944 0972
Crys 0.601 0.987 0.943
Flui 0313 0.993 (1.982
Average (0.537 1.886 0.929
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Fig, 11. Three correlation results which represent refation-

ships of each similarity pairs, <r1 and m12>, <r2
and m12> and <r1y2 and m12>.
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three correlation results which represent relationships
of cach similarity pairs as shown in Fig. 11. in this
figure, the =rl, m12> means the correlation between
the similarity by using #| and m12. Similarly, <2,
mi2> and <rD)2, ml2> mean the cormrelation
between the similarity by using #2, m12, and r1r2,
m)2 in respectively. Although 1 itself has somewhat
weak correlation with m12, the combined metric
r172 by adding the measure 2 has strong correlation
with m12. Thus, it supports that our new measure
r1r2 for shape filtering is adjusted to its filtering
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purpose,

Therefore, we conclude the shape descriptor S» is
an effective shape descriptor for screening in the
geomeltrical and computational viewpoint. The
proposed two bounding spheres effectively capture
the shape of proteins and cxtract the useful
information with less storage. In this experiment, all
PDB files are converted into the feature vectors with
over 130 bytes by using our M3D shape descriptor.

5. Conclusion

We present ¢ new 3D shape descriplor for
screening the molecular database which is based on
the moments of distributions for the inter-atomic
distances. Unlike the previous method, USR, our
method has the expanded features for filtering by
using Eq. (7) and Lq. (8). We can get the value .
the number of atoms from PDB preprocessing. This
value can give the natural index lor retricving the
records in DB. In this paper. we add the geometrical
structure as terms of »1 and 2 by using Eq. (8} in our
shape descriptor to empower the geometric interpre-
tation for shape differentiation power. As shown in
section 4, the proposed method is very fast and
remarks the considerable shape differentiation power
like USR. Our method is useful in the pre-processing
for the exact shape comparison. Although our
algorithm gives us fast and considerable result, we
do not {ind the optimal configuration of the feature
capturing positions due to tradcoffs between the
accuracy and speed. This is onc of the future works.
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