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ABSTRACT

In the computational molecular analysis, 3D structural comparison for protein searching plays a very 
important role. As protein databases have been grown rapidly in size, exhaustive search methods can­
not provide satisfactory performance. Because exhaustive search methods try to handle the structure of 
protein by using sphere set which is converted from atoms set, the similarity calculation about two 
sphere sets is very expensive. Instead, the filter-and-refine paradigm offers an efficient alternative to 
database search without compromising the accuracy of the answers. In recent, a very fast algorithm 
based on the inter-atomic distance has been suggested by B allester and Richard. Since they adopted the 
moments of distribution with inter-atomic distance between atoms which are rotational invariant, they 
can eliminate the structure alignment and orientation fix process and perform the searching faster than 
previous methods. In this paper, we propose a new 3D shape descriptor. It has properties of the gen­
eral shape distribution and useful property in screening the molecular database. We show some experi­
mental results for the validity of our method.
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1. Introduction

The geometry of biological systems, such as the 
geometry of molecules, is a very important consi­
deration when investigating the functions of these 
systems. Molecules such as protein, DNA, and RNA 
consist of atoms. 3D structural comparison and 
structural database searching of proteins play very 
important roles. For example, researchers may want 
to search an unknown protein against a database of 
functionally annotated proteins to infer its functions 
from those found to be structurally similar to it. In 
general, structural database searching has many 
applications in the area of drug discovery. It can be 
used to verify the 3D structure of a target drug which 

is modeled by structural prediction囹.It can also be 
used to identify the similar fold structure and families 
unique to pathogenic organisms to select good drug 
targets'기, etc.

An additional advantage of searching a database 
fbr molecules with similar shape in that no speci­
fication of chemical structure, such as types of atoms 
or their bond arrangement, is made and therefore 
similarly shaped molecules, but with different chemical 
scaffolds from the template, can be found. Such 
ability, known as scaffold hopping, is very crucial이. 

Techniques for scaffold hopping can be used to hop 
molecules with different scaffolds when leading 
compound have desirable features such as intractable 
chemistry or poor pharmacological properties卩勾.

In recent, advances in molecular structure analysis 
methods such as MNR and X-ray crystallography 
have been developed and contributed to a significant 
increase in the number of known protein 3D struc­
tures. Especially, the Protein Structure Data Bank 
(PDB) stores over 45,000 structures〔이. When the size 
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of the database is small, the exhaustive sea&hing of 
the database by com[旭ring the query structure against 
each and every structure in the database was done 
with acceptable performance. However, for large 
databases with tens of thousands of structures, such 
an exhaustive searching approach no longer provides 
a satisfactory response time. As such, extensive 
research has gone into developing faster sear사】ing 
algorithms 卩이.

Generally, measuring similarity and classifying 
proteins in a database require experts that have 
extensive knowledge of molecular biology domain. 
This is due to the fact that some measuring methods 
siich as SCOP, DALI and FSSP, are usually based on 
a particular biological conception of structural 
similarity of proteins. These are based on sequence­
alignment scar아les. Although they yield an accurate 
searching, they are very time consuming卩키

Tims, in recent, the geometric structure based 
model similarity calculation methods of protein have 
been developed. Some researchers show that appro­
aching similarity of protein by its geometry is pro­
mising^.

Unfortunately, we cannot currently reach the full 
potential of molecular shape comparison methods in 
these applications because of several shape compari­
son methods in these applications caused by several 
major problems like the optimal orientation problem 
for finding and capturing the shape adequately. Many 
methods using molecular shape as the pattern to 
recognize require previous alignment process of the 
molecules being compared, which is an additional 
source of difficulty that may lead to suboptimal 
molecular overlap and thus to an inaccurate similar 
score. Additionally, it is needed to understand how 
well molecular shapes are being described and thus 
compared. Especially, a small inaccuracy in the 
description of shape will lead to many similar com­
pounds being undetected, given the very large size of 
interesting molecular databases.

The rest of this paper is organized as the following. 
In Section 2, we describe some related works done 
by previous researchers. In Section 3, we present our 
inter-atomic distance based shape descriptor and its 
implementation. In Section 4, we discuss the experi­
mental result and some hi암]li아ited observations. 
Section 6 concludes the paper.

2. Molecular Shape Comparison

2.1 Orientation fix method
In general, these categorical methods take three 

steps. They are normalization, spatial partitions and 
comparing step. Several issues s니ch as normalization, 

spatial partitions and geometric features were address­
ed by many researchers[1].

Normalization step is to determine the full normali­
zed pose or semi-normalized pose of molecules. The 
semi-normalized pose is obtained by transforming 
them such that their center of mass is in the origin 
and scaling them to a certain unit of bounding box. 
The full-normalized pose is aimed to preserve the 
object invariant to translation, scaling, rotation and 
mirroring. Translation and scaling invariance are 
easily obtained by the same way as in the semi­
normalized form.

(a) (b) (c)

Fig. 1. Some spatial partitions (a) 3D-ecompositions, (b)
3D Grid, (c) Spherical Wedge.

However, rotational invariance is obtained by the 
following way. First employ Principal Component 
Analysis (PCA) to the objects in order to get the 
principal axis. Second, rotate them such that first 
major axis is adjacent to x-axis, the second axis to y- 
axis, and the third to z-axis respectively. Mirroring 
invariance is obtained by flipping the objects such 
that the larger part is on the positive side.

Spatial partition is to capture the shape features. 
Some spatial partitions are shown in Fig. 1. Fig. 1(a) 
shows the case of the 3D decomposition which 
enables to count the vertices of the 3D model in each 
spherical sector. Fig. 1(b) shows the 3D grid for 
counting the vertex of the 3D model. Fig. 1(c) shows 
the spherical wedge for counting vertices of the 3D 
model in each wedge like cone.

Ankerst suggested the method which extracts geo­
metry of the molecules and maps into the 3D shape 
histogram, using three options of 3D decomposition 
techniques지. Each decomposition model is the ball 
(shell), sector and combination of both (spider-web). 
Since the cost of PCA is expensive and optimal 
orientation cannot be always guaranteed, the orien­
tation dependent methods suffer from unintended 
loss for the ideal result.

2.2 Orientation free method
Many researchers suggested some methods which 

take the strategy by using the position of the mole­
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cule which is orientation independent. As we will 
discuss in this section, Yeh et al. suggested the 
method with the Light Field Descriptor['기. In this 
method, each model is rotated several times in order 
to obtain its projection image from some camera 
positions. Therefore, captured features are composed 
of several features of 2D shape and contour of 
projection images, i.e. which are called as Zenrike 
moments. After combining these features, they 
calculate the distance of features by using L nom. 
This norm is called as the Manhattan distance which 
represents the distance between two vectors as 
shown in Eq. (1). The dissimilarity of two proteins is 
assessed by using this norm. Here, p and q are the 
feature vectors.

dManhattan^ 이) ⑴

This method needs to generate an intermediate 
representation, i.e. 2D images of 3D protein, before 
extracting the features. It causes a hard calculation 
and the quality of the method depends on the number 
of camera positions for the projection. In case of the 
protein of many atoms, the projected image cannot 
easily guarantee the exact similarity assessment because 
they do not use exact distance between atoms[5].

Inter-atomic distance is defined as the Euclidean 
distance between two atoms. Inter-atomic distance 
based shape descriptor gives some advantages. At 
first, the distribution generated from inter-atomic 
distances reflects the shape of protein. In general, the 
shape of a molecule is uniquely determined by the 
relative position of its atoms[이히. In this way, the 
molecule is regarded as a group of atoms, instead of 
its more conventional treatment as a solid body. The 
relative position of atoms in the molecule is in turn 
completely determined by the set of all inter-atomic 
distances. This is a convenient representation, which 
directly eliminates any need for alignment or trans­
lation, as this set of distances is independent of 
molecular orientation or position. However, the set of 
all inter-atomic distances contains more information 
that is needed to describe the shape of the molecule 
accurately. This is because the values of these dis­
tances are heavily constrained by the forces that hold 
the atoms together and thus using less information 
would still provide us with the shape discrimination 
power necessary to distinguish between molecules. 
Nevertheless, it is not widely used in molecular 
shape comparison because the calculation of the set 
of all inter-atomic distances is heavy as shown in 
Fig- 2.

If the given molecule has n positions which repre­
sent the center of each atom, the number of all inter­

atomic distance pair is nx(n-l)/2. Hence, we need to 
develop an method for feature capturing with more 
simplified combination of inter-atomic distance pairs. 
Some researchers try to solve this problem using 
histogram composed of distance between each atom. 
However, histogram calculation can suffer from well- 
known limitations. Under the very large databases, it 
is difficult to find the bin size suitable for all mole­
cules. It does not meet the requirement of relatively 
large storage and computing power卩이.

(a) (b) (c)

Fig. 2. Molecule, atom positions and all inter-atomic 
distance pairs (a) molecule, (b) atom positions, (c) 
all inter-atomic distance pairs.

Fig. 3. Molecule, (a) the set of atoms, (b) four feature 
capturing locations and their relationship.

2.3 Ultrafast shape recognition method
To solve the problem mentioned above, Ballester 

and Richard adopted the distribution of the inter­
atomic distance with only four feature capturing 
positions. This algorithm is called as USR (Ultrafast 
Shape Recognition). This method is very fast. In this 
method, they use the first, second and third moments 
of the distributions for all atomic distances in order 
to characterize them as a way to encode the mole­
cular shape^L Each moment is calculated by Eq. (2), 
(3) and (4). In statistics, the first moments of the 
given data set is the mean which represents the 
central tendency as shown in Eq. (2).

The second moment is the variance which repre­
sents the dispersion as shown in Eq. (3). The third 
moment is the skewness which represents the asym­
metric property of the given distribution as shown in 
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Eq. (4). Here, is the data.

〒 = ⑵

s = £；=°(x「f)2 ⑶

b =------- i------- yw (Xz~x)3 (4)

It is supported by a theorem from statistics, which 
prove that a distribution is completely determined by 
its moments[,1,141. They suggest very fast, and efficient 
method using four types of inter-atomic distance 
based distributions and their moments. In their method, 
they define the set of all inter-atomic distances from 
four molecular locations, the centroid of all atoms 
(me), the closest atom from me (cd), the farthest 
atom from me ｛fd) and the ferthest atom from fa (ff) 
are the locations respectively. These locations repre­
sent the center of the molecule and its extremes, and 
thus are well separated as shown in Fig. 3.

Four feature capturing locations are defined as 
follows:

Definition 1 : me, The center location of all atoms 
of given protein p.

Definition 2 : ca, The location of the atom with the 
minimum distance from me.

Definition 3 : fa, The location of the atom with the 
maximum distance from me.

Definition 4 : ff, The location of the atom with the 
maximum distance from fa.

They try to capture the distribution of inter-atomic 
distance from the four locations to other atoms 
respectively. Fig. 4 shows the process of generating 
the distribution.

Four distributions are as follows.
1. ｛(Tc｝k= i corresponds to the Fig. 4(a)
2. ｛疔｝；=i corresponds to the Fig. 4(b)

3. ｛" ｝：= 1 corresponds to the Fig. 4(c)*

4. 1 corresponds to the Fig. 4(d)

where N is the number of atom, d",# and d-ff 
are the Euclidean distances from me, ca, fa and ff to 
each atom, as shown in Eq. (5). Here, p and q are the 
feature vectors.

9 1/2
“汨=(£；=o|p厂이 ) (5)

By using these four distributions, 12 shape descriptors 
are defined.

First descriptor (妒)corresponds to the first

moment of the distribution This value
means the mean atomic distance to the geometrical 
center and thus it provides an estimate of the size of 
the molecules.

Second descriptor。必)corresponds to the second 
moment of ｛#"｝：= r This value is the variance of 
these atomic distances from the centroid and hence it 
is related to how compact the molecule is.

Third descriptor ) corresponds to the third 
moment of ｛戏$=)• This value is the skewness of 
the same distribution, which estimates its asymmetry 
and thus whether the atoms are near or far from the 
mean atomic position from the centroid.

Similarly,(，妒),(必),(度'),(渚),(/咨),(，房")， 

(/zf), (//f), and (*)  are calculated from the distribu- 

tionsof (｛妒｝；=],滅｝仁]and ｛d屛 =Q.

After all 12 shape descriptors in a given molecule 
are calculated, they are assembled in an associated 
vector which is uniquely defined as follows.

z me me me ca ca ca fa fa fa ff ff ff、
=(01，#2 M，〃1，#2 /3，"1 ，此此

Here, spans a 12-dimensional molecular shape 
space. Now, it enables the similarity calculation 
between a given query molecule and each protein in 
a database. In this process, the normalized score 
function is used to quantify the degree of similarity 
between molecules. These values are assessed by 
using the inverse function of the distance between 
two vectors composed of twelve float values 
calculated from each molecule.

The inverse function of the translated and scaled

(c) (d)

Fig. 4. The four distributions of inter-atomic distance from 
four feature capturing locations to other atoms.
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Manhattan distance between both vectors of shape 
descriptors can guarantee the stable speed. This 
function returns a value in the range of (0, 1]. Here, 
the value 41，corresponds to maximum similarity and 
the value near 'O' corresponds to near minimum 
similarity as shown in Eq. (6).

Sqt = —i一一1 ----- : e(0, 1] (6)
1+耘和网*

Here, q and t represent query molecule and each 
molecule being compared in the database respectively. 
This method is reported to be extremely fast. The 
main reason for such efficiency is that the defined 
shape descriptors only require the calculation of 4N 
distances along with a total of 12 moments of the 
resulting four distributions. Once,靑 is calculated, 
the comparison calculation cost takes 0(A) Since 
the shape information of each molecule is 
independently encoded a vector of shape descriptor, 
which is consistent with the status as an intrinsic 
geometrical property of the molecule, they can speed 
up the screening process, as cross-calculations 
between the query and the considered molecules are 
avoided. This method is faster than other methods 
which use the calculation of molecular surface or 
molecular volume.

3. Proposed Algorithm

3.1 Problem definition
In Ballester and Richard's method, we observed 

some limitations. First, their method using four 
feature capturing positions does not always guarantee 
the desirable matching. Second, the method can 
compare only representative feature vector in terms 
of moments of four inter-atomic distance distributions. 
Thus it cannot give any scale information between 
arbitrary two feature vectors suggested by Ballester 
and Richard〔叮.

In this paper, we focus an second problem. 
Generally, the molecular shape search system 
presents the similarity result as well as the inter­
relationship in overall DB index structure between 
two molecules. It is important to speed up in the finer 
comparing process after screening process in molecular 
database. Therefore, our problem definition can be 
defined as follows:

Given the query protein q, and the target protein t, 
what is the effective shape descriptor for calculating 
the similarity measure between q and t in view of 
implementation time and the accuracy. What is the 
natural extension of USR method in view of the 
database index structure?

Here, q and t are point clouds in format of PDB 
(Protein Data Bank). The point cloud is the 
collection of the center for each atom.

q = {(为,儿跖),(知乃,기), ... , zm)}.
t= {(X1,*1,Z1),  (乂2,处而)，，(Xn,*,%)}.

Here, m and n are the numbers of atoms in q and t.
We use the moment vector method like Ballester 

and Richard's method. First, we get the four 
distributions using four feature capturing positions in 
section 2.3.

3.2 3D shape descriptor fbr protein with natural 
extension of USR method

3.2.1 3D shape descriptor
For the purpose of acquiring the natural extension 

of USR method in view of database index structures, 
we analyze the USR generation process. USR feature 
vector generation steps are as follows.

Procedure 1 USR feature vector generation step
Input : PDB file with x, y, z coordinate which 

represents the center point of each atom
output: 12 moments of four inter-atomic distances 

with four feature capturing positions
Step 1 Find me from xyz using average (x, y, z)
Step 2 Find ca using min distance between me and 

other atoms
Step 3 Find fa using max distance between me and 

other atoms
Step 4 Find ff using max distance between fa and 

other atoms
Step 5 "严} {才"} {cfa}. and {cf} are generated
Step 6 Calculate the moments 1st (AVG), 2nd 

(VAR), and 3rd (SKEW)
Step 7 Return the feature vector (ml,秫2, ... ml2)

Above steps are naturally extended into the below 
procedure without the loss of generality.

Procedure 2 Proposed 'M3D' feature vector 
generation step

Input : PDB file with x, y, z coordinate which 
means the center of each atom

output : n, rl and r2, 12 moments of four inter­
atomic distance with four feature capturing 
positions

Step 1 Find me from xyz using average (x, y, z) 
n is calculated after step 1 is done.

Step 2 Find ca using min distance between me and 
other atoms. Here, this max distance is 
defined as rl. This value means the radius 
of the inscribed sphere in R3.

Step 3 Find fa using max distance between me and
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Fig. 5. The effect of n, the number of atoms (a) 116D.pdb
(b) Insulin.pdb, (c) lAA7.pdb, (d) ICJD.pdb.

other atoms. Here, this max distance is 
defined as rl. This value means the radius 
r2 is the circumscribed sphere in R3.

Step 4 Find ff using max distance between fa and 
other atoms.

Step 5 0"} {c严} 0% and {(/} are generated
Step 6 Calculate each moments 1st (AVG), 2nd 

(VAR), and 3rd (SKEW)
Step 7 Return the feature vector (〃，rl, r2, ml, 

m2,..., ml2).

3.2.2 Two speedup factors
In the procedure 2, we can find the interesting 

properties. First, we can easily acquire n, the number 
of atoms. This value can be used to index structure 
for retrieving the molecular database as a starting 
point as shown in Fig. 5.

Second, we can compute rl and rl easily, the radii 
of bounding spheres respectively as shown in Fig. 6. 
Using rl and r2, we can deal with smaller sets with 
similar proteins, Each term shows the differentiation 
power. First, our shape descriptor represents the 
important geometrical structure in terms of rl and rl.

In Fig. 6, rl means the distance between me and 
ca. This information shows the given protein's inside 
structure as shown in Fig. 6(d). If this value is big, 
then the given protein is likely to have a hollowed 
part as shown in Fig. 7(a).

In Fig. 6, rl means the distance between me and fa 
as shown in Fig. 6(c). This implies the volume size 
of the given protein. In USR, since they only 
compare the molecules by using 1st, 2nd and 3rd 
moments of four distributions with four feature 
capturing positions, the original shape's geometry

(c) (d)

Fig. 6. The A and rl as their geometric view and shape 
descriptor (a) protein 2LAL, (b) bounding sphere 
with rl, (c) bounding sphere with 尸2, (d) bounding 
spheres with 시 and rl.

Fig. 7. The effect of rl and rl (a) Uckminsterfullerene, (b) 
Fructose.

(b)

and topological information are unknown.
However, if the number of atoms of two proteins is 

considerably different, we think two shapes are 
considerably different structure and it is reasonable.

Finally, our feature vector from the proposed 3D 
molecular shape descriptor is as follows.

M3D = {払
시,

r2,
ml, /t?4, mJ, mlO, 
m2, m4, m8, mW, 
m3, m6, m9, ml2,

// number of atoms
// dist (me, ca)
// dist

// 1st moments of K
// 2st moments of K

// 3rd moments of K

Here, n is acquired by accounting the atom number 
from PDB file. K means four distributions, {“严} 

{舟} {g門}, {</} }. rl and rl is made up of dist (me, 
cd) and dist (me, fa) is calculated by Eq. (5) in 
respectively. These values are taken from Procedure 
2.
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3.3 Similarity measure
Our similarity measure is composed of three parts. 

They are the number of atoms in the protein, n, radii 
of two bounding sphere rl and r2, and the original 
USR, ml,…，ml2 respectively. These three parts 
have each role fbr screening the molecular database.

3.3.1 The number of atoms
Quite different number of atoms in protein reflects 

quite different shape of the protein as 아lown in Fig. 5.
It is somewhat vague measure in view of exact 

shape mat아ling. However, this measure filters the 
potentially unmatched proteins. If a new entry 
protein p has n number of atoms, then our algorithm 
start to retrieve the exact number of atoms, n. As 
shown in Fig. 8, it lessens the problem space by 
skipping comparisons between proteins with a huge 
difference in the number of atoms. The criteria for 
the number of atoms are user specific or statistically 
assigned value by using Eq. (7).

C _J10glo|"2-끼 M ,r、
B] — < . (/)

[otherwise goto S2

Here, n】and n2 are the number of query protein q 
and target proteins th If the value of £ is larger than 
k (=3.0), then the number of atoms between two 
proteins is larger than 1,000, where k is the user 
assigned value.

This rule with S} can reduce the size of protein 
screening because of the controlling of the user 
defined value, k. For the determination of the value k, 
we test the rule 1 with 四rious k under test set which 
is 아lown in table 1. In the case of k= 100, k= 1,000 
and 左=10,000, we can get 14, 102 and 308 proteins 
as the similar proteins under given query proteins. 
Although, we don't take the optimal k, we took 
k= 1,000 in practical view.

Fig. 8. as a starting point of the screening process.

3.3.2 Two bounding spheres
After assessing n as the starting point of screening 

process with Eq. (7), we calculate the Eq. (8) which 
is the similarity measure of simplified volumetric

Fig. 9. The focused set generation using n with S and 
shape filtering with S2 and exact shape matching 
with、单.

structure which is formulated with rl and rl.
1

& = 一-七——:e(0, 1] 
1+叔시…에

(8)

Here, the similarity S2 is the measurement which 
reflects the bounding sphere with rl and bounding 
sphere with rl as described in section 3.2.2. It can be 
decomposed form about rl and rl in respectively. 
Then, we can measure the similarity effects in rl and 
rl by Eq.⑼ and Eq. (10) as follows:

1
$2 rl =

rl —
1+核-移I

e(0, 1]

E(0, 1]1$2

(9)

(10)

In section 4.2, we show the similarity value pairs 
v&_ri, Sq]乙 V，,2,財 and < S2, S爭〉in Table 3 and 
Fig. 11. Here, Sqt is the similarity measure which 
represents 12 moments, <ml, ... m!2> by using Eq. 
(6).

3.3.3 Shape filtering with S] and S2
After two steps, the search space to proceed is 

extremely shrinked as shown in Fig. 9 because of the 
effect of two similarity measures as shown in Eq. (7) 
and Eq. (8).

3.3.4 Shape match using Sqt
Then, we finally apply USR's 12 moments based 

similarity function as shown in Eq. (6). It takes a 
similarity calculation process between a given query 
molecule and each protein in a database. It uses the 
normalized score function to quantify the degree of 
similarity between molecules like USR.

Thus, they use the inverse of the translated and 
scaled Manhattan distance between both vectors of 
shape descriptors, where a value of 1 corresponds to 
maximum similarity and 0 to minimum similarity as 
shown in Eq. (6).
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4. Experimental Results

4.1 Experimental data
Table 1 shows the experimental data. These files 

were downloaded from RCSB (Research Collaboratory 
for Structural Bioinformatics) Protein Data Bank 
(www.pdb.org) and Fig. 10 아lows their PDB files. 
These models were rendered by using the OpenGL. 
Our shape descriptor and similarity calculation 
method were developed under the Microsoft visual 
studio 2005 and C++ language.

Table 1. Input PDB files to the proposed algorithm

PDB file name # of atoms File size (KB)

116D.pdb 243 44

IVQLpdb 811 115

insulin.pdb 829 160

lA8G.pdb 1,527 174

3CRO.pdb 1,856 214

ITNR.pdb 2,208 224

2BBM.pdb 2,700 258

lAHS.pdb 2,842 278

lAAW.pdb 3,069 285

lAA7.pdb 2,980 288

lB9T.pdb 3,040 300

lA34.pdb 2,945 325

lA3R.pdb 3,455 329

2LAL.pdb 3,550 332

lA6C.pdb 4,016 366

lB44.pdb 4,186 378

lAYM.pdb 6,412 618

ICJD.pdb 8,502 763

crystall.pdb 23,978 1,593

fluid.pdb 26,849 2,019

4.2 Feature vector as shape descriptor of each 
proteins

Table 2 shows the converted feature vector 
generated from our method. Each protein in the 
given database is evaluated by using the similarity 
measures composed of these vectors. As described in 
section 3, three similarity measures were used.

To validate the proposed similarity measures, at 
first, we test the pair-wise comparison by using n, rl- 
r2 and values.

We test the two similarity results, which are results 
by using the rl and r2 based measure and by using 
USR measure. To acquire the statistical significance, 
we use the Pearson product-moment correlation 
coefficient r which is a common measure of the 
correlation (linear dependence) between two variables 
X and Y as 아lown in Eq. (8). Here, we set X as the 
similarity result by using Eq. (5) and Y as the 
similarity result by using Eq. (6). It means the 
similarity between two given array sets which are 
composed of each similarity values.

r = "(£Xy)-(£X)(¥) 日-1,1] (9)
，、/(”£/ - (£X)2)[花 y2 一(¥)2]

The Pearson's r reflects only numerical values of 
the given two data sets. In general, it is widely used 
to measure the pair-wise similarity of two data sets [16].

We can get the results with Pearson's r as shown in 
Table 3. Each three measures are evaluated in Table 
3. Here, <rl &m]2> means the pearson's correlation 
coefficient r in given two sets from rVs similarity in 
Eq. (9) and ml2's similarity Sqt in Eq. (6). The 
average of <rl&ml2> marked 53.7%. the average of 
<r2&m!2> and <rl, r2&m\2> marked 88.6% and 
92.9% in respectively.

These results provide the strong correlation 
between result of Eq. (6) and Eq. (8). It can be 
analyzed that our <rl, r2> based shape descriptor by 
using the similarity measure, S2 as shown in Eq. (8) 
in the section 3.3.2 is well adjusted in shape filtering 
before Sgl process. It can be also validated to draw

Fig. 10. PDB models. Each PDB file name is described in Table 1 and is sorted by using # of atoms.

⑴ （I）

(t)

한국CAD/CAM학회 논문집 제 14 권 제 6호 2009년 12월

http://www.pdb.org


412 이재호* 박준영

Table 2. The resulting feature vectors as name of M3D descriptor by using the proposed algorithm

M3D Descriptor n rl r2 ml m2 m3 m4 m5 m6 ml zw8 m9 mlO 7W11 m!2

116D_usr_dgu.txt 243 4.0 18.9 1L6 10.4 0.2 11.8 21.1 -0.1 21.0 60.9 -0.8 20.4 77.7 -0.6

lVQI_usr_dgu.txt 811 1.7 27.2 13.6 26.4 0.4 13.6 29.4 0.5 29.2 97.6 -0.4 28.5 90.9 -0.2

insulin usr_dgu.txt 829 2.1 22.8 12.9 19.9 0.0 13.1 20.9 0.0 25.0 81.8 -0.2 24.3 98.5 -0.1

IA8G usrjdgu.txt 1,527 1.5 33.4 16.6 303 -0.1 16.6 31.6 0.0 35.6 154.S -0.2 33.6 1471 -0.2

3CRO usr_dgu.txt 1,856 3.2 35.3 18.4 44.1 0.1 18.6 47.6 0.2 37.8 206.8 -0.1 35.4 205.7 0.1

lTNR_usr_dgu.txt 2,208 1.1 5L1 22.9 91.5 0.4 22.9 93.2 0.5 53.2 392.2 -0.6 38.5 311.7 0.4
2BBM_usr典 u.txt 2,700 1.0 32.0 16.2 28.7 0.0 16.2 28.8 0.0 34.8 101.2 *0.3 30.3 113.4 -0.2

1 AHS_usr_dgu.txt 2,841 4.6 32.8 19.1 31.3 -0.2 19.6 34.4 -0.2 36.7 120.7 -0.3 34.1 129.5 -0.4

1A34 usr_dgu.txt 2,945 0.5 44.2 19.1 72.7 0.6 19.2 72.4 0.6 45.9 283.0 -0.5 39.5 276.8 0.2

lAA7_usr_dgu.txt 2,980 1.9 34.9 19.5 42.7 -03 19.5 44.0 -0.2 37.8 205.5 0.0 353 202.2 0.0

1B9T 니就 dgu.txt 3,040 1.7 37.0 18.8 30.3 -0.3 18.9 30.8 -0.3 40.1 144.0 -0.6 30.8 115.4 0.1
1AAW usr_dgu.txt 3,069 1.8 41.8 20.6 45.0 0.0 20.6 463 0.0 46.1 91.5 -1.2 32.6 109.4 0.0
1A3R usr_dgu.txt 3,455 3.4 43.5 24 J 55.0 0.0 24.3 58.2 0.0 46.3 381.8 -0.2 44.4 378.4 0.1

2LAL_usr_dgu.txt 3,550 2.1 44.8 23.5 71.6 0.0 23.7 72.0 -0.1 41.0 388.2 0.1 47.2 285.2 0.0
1A6C usr___dgu.txt 4,016 1.9 55.3 25.0 91.4 0.2 25.1 92.2 0.2 58.1 398.4 -0,5 52.5 296.4 0.3
lB44_iisr_d 효u.txt 4,186 6.4 36.2 22.4 36.1 -0.4 23.0 49,6 -0.2 40.7 189.2 -0.3 36.9 172.0 -0.2

1 AYM_usr_dgu.txt 6,412 1.7 226.3 30.8 710.7 5.9 30.9 711.6 5.9 227.6 10723 -4.7 51.5 1088.2 4.2
lCJD_usr_dgu.txt 8,502 6.2 47.5 29.0 60.2 -0.5 29.4 72.5 -0.4 54.1 235.8 -0.3 53.1 237.5 -0.5

crystall 니sr__dgu.txt 3,978 2.5 60.8 39.5 99.9 -0.7 39.5 101.9 -0.7 69.9 469.8 -0.4 68.8 488.7 -0.4
fluid_usr_dgu.txt 6,849 1.9 67.2 38.7 125.6 -0.2 38.8 126.4 -0.2 74.8 549.6 -0.3 72.3 550.7 -0.3

Table 3. The result of the Pearson^ r for calculating 
correlations between the similarity results caknHated 
by using Eq. (6) and Eq. (8)

Protein 
ID

Pearson's r
<rl&ml2> <r2&ml2> <rl ,r2&m 12>

116D 0.800 0.987 0.975
1VQI 0.366 0.981 0.955
Insu 0.393 0.982 0.964
1A8G 0.436 0.779 0.973
3CRO 0.766 0.775 0.864
1TNR 0.541 0.975 0.966
2BBM 0.577 0.843 0.976
1AHS 0.865 0,775 0.912
1A34 0.764 0.878
1AA7 0.367 0.790 0.658
1B9T 0.373 0.843 0.881
1AAW 0.345 0.921 0.904
1A3R 0.706 0.806 0.988
2LAL 0.398 0.809 0.863
1A6C 0.333 0您5 0.967
1B44 0.768 0.773 0.962
1AYM 0.320 1.000 1.000
ICJD 0.755 0.944 0.972
Crys 0.601 0.987 0.943
Flui 0.313 0.993 0.982
Average 0.537 0.886 0.929

Fig. 11. Three correlation results which represent relation­
ships of each similarity pairs, <r\ and ml2>, <r2 
and ml2> and <rlr2 and ml2>.

three correlation results which represent relationships 
of each similarity pairs as shown in Fig. 11. In this 
figure, the <rl, ml2> means the corr비ation between 
the similarity by using rl and m!2. Similarly, <r2, 
ml2> and <rlr2, ml2> mean the correlation 
between the similarity by using r2, ml2, and rlr2, 
ml2 in respectively. Although rl itself has somewhat 
weak correlation with m!2, the combined metric 
r\r2 by adding the measure rl has strong correlation 
with m\2. Thus, it supports that our new measure 
rlr2 for shape filtering is adjusted to its filtering 
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purpose.
Therefore, we conclude the shape descriptor S2 is 

an effective shape descriptor fbr screening in the 
geometrical and computational viewpoint. The 
proposed two bounding spheres effectively capture 
the shape of proteins and extract the 니seflil 
information with less storage. In this experiment, all 
PDB files are converted into the feature vectors with 
over 130 bytes by using our M3D shape descriptor.

5. Conclusion

We present a new 3D shape descriptor for 
screening the molecular database which is based on 
the moments of distributions for the inter-atomic 
distances. Unlike the previous method, USR, our 
method has the expanded features for filtering by 
using Eq. (7) and Eq. (8). We can get the value '〃'， 

the number of atoms from PDB preprocessing. This 
value can give the natural index for retrieving the 
records in DB. In this paper, we add the geometrical 
structure as terms of rl and rl by using Eq. (8) in our 
shape descriptor to empower the geometric interpre­
tation for shape differentiation power. As shown in 
section 4, the proposed method is very fast and 
remarks the considerable shape differentiation power 
like USR. Our method is useful in the pre-processing 
fbr the exact shape comparison. Although our 
algorithm gives us fast and considerable result, we 
do not find the optimal configuration of the feature 
capturing positions due to tradeoffs between the 
accuracy and speed. This is one of the future works.
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