Enhanced Crystallization of Bisphenol-A Polycarbonate by Organoclay in the Presence of Sulfonated Polystyrene Ionomers

  • Govindaiah, Patakamuri (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Lee, Jung-Min (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Lee, Seung-Mo (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Kim, Jung-Hyun (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Subramani, Sankaraiah (Department of Chemistry, Missouri University of Science and Technology)
  • Published : 2009.11.25

Abstract

Polycarbonate (PC)/sulfonated polystyrene (SPS) ionomer/organoclay nanocomposites were prepared by a solution intercalation process using the SPS ionomer as a compatibilizer. The effect of an organoclay on the melt crystallization behavior of the ionomer compatibilized PC were examined by differential scanning calorimetry (DSC). The melt crystallization behavior of PC was dependent on the extent of organoclay dispersion. The effect of the ionomer loading and cation size on intercalation/exfoliation efficiency of the organoclay in PC/SPS ionomer matrix was also studied using wide angle X-ray diffraction (WAXD) and transmission electron microscopy (TEM). Dispersion of the organically modified clay in the polymer matrix improved with increasing ionomer compatibilizer loadings and cation size. The SPS ionomer compatibilized PC/organoclay nanocomposite showed enhanced melt crystallization compared to the SPS ionomer/PC blend. Well dispersed organoclay nanocomposites showed better crystallization than the poorly dispersed clay nanocomposites. These nanocomposites also showed better thermal stability than the SPS ionomer/PC blend.

Keywords

References

  1. P. C. LeBaron, G. Wang, and T. J. Pinnavaia, Appl. Clay Sci., 15, 11 (1999) https://doi.org/10.1016/S0169-1317(99)00017-4
  2. M. Alexander and P. Dubois, Mater. Sci. Eng., 28, 1 (2000)
  3. S. S. Ray and M. Okamoto, Prog. Polym. Sci., 28, 1539 (2003) https://doi.org/10.1016/j.progpolymsci.2003.08.002
  4. E. Manias, Nature Matetials, 6, 9 (2007) https://doi.org/10.1038/nmat1812
  5. R. A. Vaia and E. P. Giannelis, MRS Bull., 26, 394 (2001) https://doi.org/10.1557/mrs2001.93
  6. Y. H. Kim, K. T. Bang, S. J. Choi, J. M. Kim, M. S. Han, and W. N. Kim, Macromol. Res., 15, 676 (2007) https://doi.org/10.1007/BF03218949
  7. J. C. Kim and J. H. Chang, Macromol. Res., 15, 449 (2007) https://doi.org/10.1007/BF03218813
  8. A. Kelarakis, E. P. Giannelis, and K. Yoon, Polymer, 48, 7567 (2007) https://doi.org/10.1016/j.polymer.2007.11.005
  9. B. Vonfalka and W. Rellensman, Makromol. Chem., 75, 122 (1965) https://doi.org/10.1002/macp.1964.020750111
  10. J. P. Mercier, G. Groeninckx, and M. Lesns, J. Polym. Sci. Part C, 16, 2059 (1967)
  11. L. Xu and R. A. Weiss, Macromolecules, 36, 9075 (2003) https://doi.org/10.1021/ma035057v
  12. X. Hu and A. J. Lesser, Polymer, 45, 2333 (2004) https://doi.org/10.1016/j.polymer.2003.12.079
  13. X. B. Hu and A. J. Lesser, J. Polym. Sci. Part B: Polym. Phys., 41, 2275 (2003) https://doi.org/10.1002/polb.10592
  14. T. M. Wu and C. S. Liao, Macromol. Chem. Phys., 201, 2820 (2000) https://doi.org/10.1002/1521-3935(20001201)201:18<2820::AID-MACP2820>3.0.CO;2-4
  15. P. J. Yoon, D. L. Hunter, and D. R. Paul, Polymer, 44, 5323 (2003) https://doi.org/10.1016/S0032-3861(03)00528-7
  16. X. Huang, S. Lewis, W. J. Brittain, and R. A. Vaia, Macromolecules, 33, 2000 (2000) https://doi.org/10.1021/ma991709x
  17. N. N. Bhiwankar and R. A. Weiss, Polymer, 46, 7246 (2005) https://doi.org/10.1016/j.polymer.2005.06.035
  18. L. Cui and R. D. Paul, Polymer, 48, 1632 (2007) https://doi.org/10.1016/j.polymer.2007.01.036
  19. R. K. Shah and R. D. Poul, Macromolecules, 39, 3327 (2006) https://doi.org/10.1021/ma0600052
  20. C. I. Park, O. O. Park, J. G. Lim, and H. J. Kim, Polymer, 42, 7465 (2001) https://doi.org/10.1016/S0032-3861(01)00213-0
  21. C. I. Park, W. M. Choi, M. H. Kim, and O. O. Park, J. Polym. Sci. Part B: Polym. Phys., 42, 1685 (2004) https://doi.org/10.1002/polb.20040
  22. P. Govindaiah, S. R. Mallikarjuna, and C. Ramesh, Macromolecules, 39, 7199 (2006) https://doi.org/10.1021/ma061471u
  23. G. D. Barber, B. H. Calhoum, and R. B. Moore, Polymer, 46, 6706 (2005) https://doi.org/10.1016/j.polymer.2005.05.024
  24. B. J. Chisholm, R. B. Moore, G. Barber, F. Khouri, A. Hempstead, M. Larsen, E. Olson, J. Kelley, G. Balch, and J. Caraher, Macromolecules, 35, 5508 (2002) https://doi.org/10.1021/ma012224n
  25. Z. M. Wang, H. Nakajima, E. Manias, and T. C. Chung, Macromolecules, 36, 8919 (2003) https://doi.org/10.1021/ma035291l
  26. J. A. Lee, M. Kontopoulou, and J. S. Parent, Polymer, 46, 5040 (2005) https://doi.org/10.1016/j.polymer.2005.04.044
  27. S. Subramani, S. W. Choi, J. Y. Lee, and J. H. Kim, Polymer, 48, 4691 (2007) https://doi.org/10.1016/j.polymer.2007.06.023
  28. J. A. Lee, M. Kontopoulou, and J. S. Parent, Macromol. Rapid Commun., 28, 210 (2007) https://doi.org/10.1002/marc.200600611
  29. Y. H. Shin, W. D. Lee, and S. S. Im, Macromol. Res., 15, 662 (2007) https://doi.org/10.1007/BF03218947
  30. X. Lu and R. A. Weiss, Macromolecules, 29, 1216 (1996) https://doi.org/10.1021/ma950980l
  31. R. Xie and R. A. Weiss, Polymer, 39, 2851 (1998) https://doi.org/10.1016/S0032-3861(97)00632-0
  32. X. Lu and R. A. Weiss, Macromolecules, 24, 4381 (1991) https://doi.org/10.1021/ma00015a021
  33. X. Lu and R. A. Weiss, Macromolecules, 25, 6185 (1992) https://doi.org/10.1021/ma00049a015
  34. T. K. Kwei, Y. K. Dai, X. Lu, and R. A. Weiss, Macromolecules, 26, 6583 (1993) https://doi.org/10.1021/ma00076a042
  35. R. A. Weiss, L. Shao, and R. D. Lundberg, Macromolecules, 25, 6370 (1992) https://doi.org/10.1021/ma00049a039
  36. M. Hara and A. Eisenberg, Macromolecules, 17, 1335 (1984) https://doi.org/10.1021/ma00137a008
  37. M. Hara and A. Eisenberg, Macromolecules, 20, 2160 (1987) https://doi.org/10.1021/ma00175a019
  38. Z. Gao, A. Molnar, F. M. Morin, and A. Eisenberg, Macromolecules, 25, 6460 (1992) https://doi.org/10.1021/ma00050a012
  39. R. Tannenbaum, M. Rutkowska, and A. Eisenberg, J. Polym. Sci. Part B: Polym. Phys., 25, 663 (1987) https://doi.org/10.1002/polb.1987.090250316
  40. D. H. Kim and S. C. Kim, Macromol. Res., 16, 457 (2008) https://doi.org/10.1007/BF03218545
  41. R. A. Weiss and X. Lu, Polymer, 35, 1963 (1994) https://doi.org/10.1016/0032-3861(94)90989-X
  42. F. Kucera and J. Jancar, Chem. Papers, 50, 224 (1996)