Optically Active and Organosoluble Poly(amide-imide)s Derived from N,N'-(Pyromellitoyl)bis-L-histidine and Various Diamines: Synthesis and Characterization

  • Faghihi, Khalil (Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, Arak University) ;
  • Shabanian, Meisam (Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, Arak University) ;
  • Hajibeygi, Mohsen (Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, Arak University)
  • Published : 2009.11.25

Abstract

An optically active diacid containing the L-histidine moiety was prepared by reacting pyromellitic dianhydride (1,2,4,5-benzenetetracarboxylic acid 1,2,4,5-dianhydride) 1 with L-histidine 2 in acetic acid, and was polymerized with several aromatic diamines 5a-g to obtain a new series of optically active poly(amide-imide)s (PAIs) using two different methods, such as direct polycondensation in a medium consisting of N-methyl-2-pyrrolidone (NMP)/triphenyl phosphite (TPP)/calcium chloride ($CaCl_2$)/pyridine (Py) and direct polycondensation in a tosyl chloride (TsCl)/pyridine (Py)/N,N-dimethylformamide (DMF) system as a condensation agent. The resulting new polymers 6a-g with inherent viscosity was obtained in good yield. The polymers were readily soluble in polar organic solvents, such as N,N-dimethyacetamide (DMAc), N,N-dimethyformamide (DMF), and dimethyl sulfoxide (DMSO). The obtained polymers were characterized by FTIR, specific rotation, elemental analysis as well as $^1$H-NMR spectroscopy and gel permeation chromatography (GPC). The thermal stability of the resulting PAIs was evaluated with thermogravimetric analysis techniques under a nitrogen atmosphere.

Keywords

References

  1. P. E. Cassidy, Thermally Stable Polymers, Marcel Dekker, New York, 1980
  2. A. H. Frazer, High Temperature Resistant Polymers, Wiley, New York, 1968
  3. M. Ree, Macromol. Res., 14, 1 (2006) https://doi.org/10.1007/BF03219064
  4. A. S. Mathews, I. Kim, and C. S. Ha, Macromol. Res., 15, 114 (2007) https://doi.org/10.1007/BF03218762
  5. H. S. Jin, J. H. Chang, and J. C. Kim, Macromol. Res., 16, 503 (2008) https://doi.org/10.1007/BF03218551
  6. P. Lavrenkoa, O. Okatovaa, I. Strelinaa, M. Brumab, and B. Schulzc, Polymer, 44, 2919 (2003) https://doi.org/10.1016/S0032-3861(03)00172-1
  7. C. H. Jung and Y. M. Lee, Macromol. Res., 16, 555 (2008) https://doi.org/10.1007/BF03218559
  8. H. H. Yang, Aromatic High-strength Fibers, Wiley, New York, 1989
  9. H. R. Kricheldrof, B. Schmidt, and R. Burger, Macromolecules, 25, 5465 (1992) https://doi.org/10.1021/ma00046a053
  10. I. K. Spiliopoulos, J. A. Mikroyannidis, and G. M. Tsivgoulis, Macromolecules, 31, 522 (1998) https://doi.org/10.1021/ma9709664
  11. D. J. Liaw, P. N. Hsu, W. H. Chen, and S. L. Lin, Macromolecules, 35, 4669 (2002) https://doi.org/10.1021/ma001523u
  12. D. J. Liaw, C. C. Huang, and W. H. Chen, Polymer, 47, 2337 (2006) https://doi.org/10.1016/j.polymer.2006.01.028
  13. G. Chen, X. Zhang, J. Wang, and S. Zhang, J. Appl. Polym. Sci., 106, 3179 (2007) https://doi.org/10.1002/app.26819
  14. Kh. Faghihi, J. Appl. Polym. Sci., 109, 74 (2008) https://doi.org/10.1002/app.27675
  15. Kh. Faghihi and H. Naghavi, J. Appl. Polym. Sci., 108, 1136 (2008) https://doi.org/10.1002/app.27702
  16. Y. E. Okamoto and E. Yashima, Angew. Chem. Int. Ed. Engl., 37, 1020 (1999)
  17. E. Chiellini, G. Galli, E. Dossi, and F. Cioni, Macromolecules, 26, 849 (1993) https://doi.org/10.1021/ma00056a043
  18. K. Fujishiro and R. W. Lenz, Macromolecules, 25, 81 (1992) https://doi.org/10.1021/ma00027a014
  19. W. F. Jager, J. C. Jong, B. Lange, N. P. M. Huck, A. Meetsma, and B. L. Feringa, Angew. Chem. Int. Ed. Engl., 34, 348 (1995) https://doi.org/10.1002/anie.199503481
  20. S. E. Mallakpour, A. R. Hajipour, and Kh. Faghihi, Eur. Polym. J., 37, 119 (2001) https://doi.org/10.1016/S0014-3057(00)00097-5
  21. Kh. Faghihi, Macromol. Res., 12, 258 (2004) https://doi.org/10.1007/BF03218397
  22. D. J. Liaw, F. C. Chang, J. H. Liu, K. L. Wang, Kh. Faghihi, K. R. Lee, and J. Y. Lai, J. Appl. Polym. Sci., 104, 3096 (2007) https://doi.org/10.1002/app.25858
  23. B. Krieg and G. Manecke, Makromol. Chem., 108, 210 (1967) https://doi.org/10.1002/macp.1967.021080117
  24. T. Kojima, J. Polym. Sci. Polym. Phys. Ed., 18, 1685 (1980) https://doi.org/10.1002/pol.1980.180180802
  25. C. B. Shogbon, J. L. Brousseau, H. Zhang, B. C. Benicewicz, and Y. Akpalu, Macromolecules, 39, 9409 (2006) https://doi.org/10.1021/ma0609836
  26. A. Sannigrahi, D. Arunbabu, R. M. Sankar, and T. Jana, Macromolecules, 40, 2844 (2007) https://doi.org/10.1021/ma070049q
  27. P. Musto, F. E. Karasz, and W. J. MacKnight, Macromolecules, 24, 4762 (1991) https://doi.org/10.1021/ma00017a006
  28. Y. Wang, S. H. Goh, and T. S. Chung, Polymer, 48, 2901 (2007) https://doi.org/10.1016/j.polymer.2007.03.040
  29. P. Musto, F. E. Karasz, and W. J. MacKnight, Polymer, 34, 2934 (1993) https://doi.org/10.1016/0032-3861(93)90618-K
  30. S. Qing, W. Huang, and D. Yan, Eur. Polym. J., 41, 1589 (2005) https://doi.org/10.1016/j.eurpolymj.2005.02.001
  31. S. Mallakpour and M. Kolahdoozan, J. Appl. Polym. Sci., 104, 1248 (2007) https://doi.org/10.1002/app.25747
  32. S. Mallakpour and M. H. Shahmohammadi, Iran. Polym. J., 14, 473 (2005)
  33. A. R. Hajipour, S. Zahmatkesh, A. Banihashemi, and A. E. Ruoho, Polym. Bull., 59, 145 (2007) https://doi.org/10.1007/s00289-007-0750-4
  34. S. Mallakpour and M. H. Shahmohammadi, J. Appl. Polym. Sci., 92, 951 (2004) https://doi.org/10.1002/app.13720
  35. F. Ciardelli, O. Pieroni, A. Fissi, C. Carlini, and A. B. Altomare, Polym. J., 21, 97 (1989) https://doi.org/10.1002/pi.4980210203
  36. G. Wulff, Angew. Chem. Int. Ed. Engl., 28, 21 (1989) https://doi.org/10.1002/anie.198900211
  37. Q. S. Hu, C. Sun, and C. E. Monaghan, Tetrahedron Lett., 42, 7725 (2001) https://doi.org/10.1016/S0040-4039(01)01689-6