DOI QR코드

DOI QR Code

Growth Rate study of CPAE Cells and Osteobalst by Local Hyperthermia Duplex Stainless Steel Thermo-rod

국소온열치료용 듀플렉스 스테인리스 스틸 발열체에 의한 혈관세포와 골세포의 온도에 따른 성장률 변화 관찰

  • 최성민 (부산가톨릭대학교 치기공학과) ;
  • 김영곤 (인제대학교 의용공학과)
  • Published : 2009.11.28

Abstract

We investigated the cell growth rate according to the change of temperature of the Thermo-rod used for the local hyperthermia therapy. For this study, we fabricated the Thermo-rods (TR) using Duplex Stainless Steels having magnetic properties as well as non magnetic properties. To evaluate cell growth rates up to 15 days, we conducted cell proliferation test using cell counting methods. For the tests, the CAPEs and Osteoblats were seeded on the 6-we11 plates with the induction heated thermo-rods 30 mins a day for 15 days with 2 days interval and without induction heated thermo-rods as control group respectively. We calculated cell growth rates, 6 hours after heating. From the results, in case of CAPEs and Osteobalsts seeded groups, the cell growth rates in all groups increased drastically for 6 days after seeding, but decreased irregularly after 6 days. In conclusion, the cell growth rates showed no significant difference among all groups and it indicated that there were no effects of temperate ($41^{\circ}C$) on cell growth rates.

본 연구는 국소온열요법(Local Hyperthermia)에 사용되는 발열체(Thermo-rod)의 온도에 따른 세포성장률의 변화를 관찰하고자 한다. 연구에 사용된 발열체는 듀플렉스 스테인리스 강(Duplex Stainless Steel)을 이용하여 개발되었다. 세포성장률을 관찰하기 위하여 CPAE세포와 Osteoblast세포를 이용하였다. 각각의 세포를 well에 분주 후 3일, 6일, 9일, 12일, 15일 동안 배양만 한 군을 대조군으로 하고 well에 발열체를 식립 후 세포를 분주하여 3일 간격(3일, 6일, 9일, 12일, 15일)으로 하루 30분 유도가열을 실시하여 15일 간 배양한 군을 시험군으로 하였다. CPAE세포와 Osteoblast세포의 성장률을 관찰한 결과 두세포 모두 3일의 대조군과 시험군 모두 세포 성장률이 급격히 상승하다 6일의 대조군과 시험군 모두 급격히 감소하고 9일과 12일 그리고 15일의 대조군과 시험군의 성장률은 불규칙하게 감소하였다. 이러한 성장률 관찰 결과 두종의 세포 모두 약 $41^{\circ}C$의 온도를 가한 시험군과 온도를 가하지 않은 대조군의 차이가 없다. 따라서 CPAE세포와 Osteoblast세포는 발열체에 의한 온도(약 $41^{\circ}C$)에 영향이 없는 것으로 판단된다.

Keywords

References

  1. 통계청, "2006년 사망 및 사망원인통계결과 발표", 2006.
  2. 황은미, "온열치료와 파크릭탁셀 얄물방출에 의한 CRL1888 마우스 종양 세포주의 증식 특성에 관한 연구", 인제대학교 대학원 석사학위논문, p.1, 2009.
  3. 안계훈, "암치료 알고 시작합시다", 열음사, 2002.
  4. J. Overgaard, S. M. Bentzen, J. Overgaard and et al. "Randomised trial of hyperthermia as adjuvant to radiotherapy for recurrent or metastatic malignant melanoma," Lancet, Vol.345, No.8949, pp.540-543, 1995. https://doi.org/10.1016/S0140-6736(95)90463-8
  5. M. Urano, "For the clinical application of thermochemotherapy given at mild temperatures," International J. of Hyperthermia, Vol.15, No.2, pp.79-107, 1999. https://doi.org/10.1080/026567399285765
  6. R. D. Issels, "Hyperthermia adds to chemotherapy," European J. Cancer, Vol.10, pp.1016-1024, 2008.
  7. N. B. Hornback, "Historical aspects of hyperthermia in cancer therapy," Radiologic Clinics of North America, Vol.27, No.3, pp.481-488, 1989.
  8. M. Urano and E. Douple, "Hyperthermia and oncology," VSP, Vol.3, pp.155-180, 1991.
  9. I. A Brezovich, M. B. Lilly, and Meredith, "RF. Hyperthermia of pet animal tumours with self-regulating ferromagnetic thermoseeds," Int J Hyperthermia, Vol.6, pp.117-130, 1990. https://doi.org/10.3109/02656739009140809
  10. J. A. Paulus, J. S. Richardson, R. D. Tucker, and et al. "Evaluation of inductively heated ferromagnetic alloy implants for therapeutic interstitial hyeprthermia," IEEE Trans Biomed Eng, Vol.43, pp.406-413, 1996. https://doi.org/10.1109/10.486260
  11. D. T. Tompkins, R. Vanderby, and S. A. Klein. "Temperature-dependent versus constant-rate blood perfusion modelling in ferromagnetic thermoseed hyperthermia : results with a model of the human prostate," Int J Hyperthermia, Vol.10 pp.517-536, 1994. https://doi.org/10.3109/02656739409009355
  12. R. Cavaliere, E. C. Ciocatto, B. C. Giovanella, and et al, "Selective heat sensitivity of cancer cells Biochemical and clinical studies," Cancer, Vol.20, No.9, pp.1351-1381, 1967. https://doi.org/10.1002/1097-0142(196709)20:9<1351::AID-CNCR2820200902>3.0.CO;2-#
  13. M. Urano and E. Douple, "Hyperthermia and Oncology," VSP, Vol.1, pp.83-98, 1983.
  14. D. Knox, R E. J. Mitchel, and D. L. Brown, "Effects. of hyperthermia on microtubule organization and cytolytic activity of murine cytotoxic T lymphocytes," Experimental Cell Research, Vol.194, No.2, pp.275-283, 1991. https://doi.org/10.1016/0014-4827(91)90365-2
  15. P. Remani, V. V. Ostapenko, K. Akagi, V. N. Bhattathiri, M. K. Nair and Y. Tanaka, "Relation of transmembrane potential to cell survival following hyperthermia in HeLa cells," Cancer Letters, Vol.144, pp.117-123, 1999. https://doi.org/10.1016/S0304-3835(99)00185-8
  16. H. Fukao, M. Ikeda, T. Ichikawa, H Inufusa, K. Okada, S. Ueshima and O. Matsuo, "Effect of hyperthermia on the viability and the fibrinolytic potential of human cancer cell lines," Clinica Chimica Acta, Vol.296, pp.17-33, 2000. https://doi.org/10.1016/S0009-8981(00)00198-4
  17. M. J. Santos-Marques, F. Carvalho, C. Sousa, F. Remiao, R. Vitorino, F. Amado, R. Ferrerira, J. A. Duarte and M. L. Bastos, "Cytotoxicity and cell signalling induced by continuous mild hyperthermia in freshly isolated mouse hepatocytes," Toxicology, Vol.224, pp.210-218, 2006. https://doi.org/10.1016/j.tox.2006.04.028
  18. G. P. Raaphorst, D. P. Yang, and C. E. Ng, "Comparison of survival and DNA double strand breaks for mild hyperthermia and low dose rate/pulsed low dose rate irradiation in human cells," Thermal Biology, Vol.25, pp.305-311, 2000. https://doi.org/10.1016/S0306-4565(99)00103-5