Abstract
Mobbing is going the rounds through a society rapidly and Military is not exception. Because mobbing of military is expressed not only psychology exclusion that is mobbing pattern of adult society but also sometimes psychologic and physical mobbing, is possible to join serious military discipline like a suicide and outrageous behavior. Specially military try to protect occurrence of victims that is public service through various rules and management plan but victims is going on happen. It means importance of grasp not only current mobbing victims but also potential mobbing victims better than preparation of various rules and management plans. Therefore this paper extracts seven factors and fifty attributes that are related to this matter mobbing. Next, by using Gunwoo's Social Network Service that is made for oneself and expressing extracting factors as '1' if they are related me or not '0'. And apply similarity function(Dice's coefficient) to attributes summation included in factors to calculate similarity between the users. Third, calculate optimizing weight choosing factors included attributes by applying neural network algorithm of SPSS Clementine and propose Mobbing Value(MV) Algorithm through this total summation. Finally through this algorithm which will contribute to efficient personnel management, we can grasp mobbing victims and tentative mobbing victims.
집단따돌림(모빙: Mobbing, 이하 '모빙')은 사회 전반에 걸쳐 빠르게 확산되고 있으며 군 조직도 예외가 될 수 없다. 군 조직에서의 모빙 현상은 성인사회 따돌림의 형태인 심리적 배제뿐만 아니라 때로는 심리적, 신체적 괴롭힘까지 나타나기 때문에 자살이나 난동 같은 심각한 군기 사고로 이어지기도 한다. 특히 군 조직에서는 집단 따돌림 예방을 위한 여러 가지 제도 및 관리방안의 시행에도 불구하고 그 피해자가 계속 발생하므로 문제 해결을 위한 어떤 제도와 관리방안을 마련하는 것 보다 그 희생 대상자와 잠정적 희생 대상자를 파악하는 것이 보다 효율적이라는 것을 말해준다. 따라서 본 논문에서는 이러한 문제 해결을 위해 모빙 현상에 관련된 7개의 요소(Factor)와 그 하위에 포함된 50개의 속성 (Attribute)들을 선정한다. 이후 자체 개발한 Gunwoo's 소셜 네트워크 서비스를 이용하여 나와 커뮤니티를 형성한 그룹들에 대해 연관성 유무에 따라 관계가 있으면 '1', 관계가 없으면 '0'으로 표현하여 지수화 한다. 그리고 나와 사용자들 간의 유사도 산정을 위해 유사도 함수(Dice 계수)를 적용한다. 다음으로 SPSS 클레멘타인의 인공신경망(ANN: Artificial Neural Network) 알고리즘을 통해 7개 요소들에 대한 최적의 가중치를 산출하고, 이 값들의 총합으로 Mobbing Value(이하 '모빙 지수')를 산정하기 위한 알고리즘을 제안한다. 이 알고리즘은 현재의 모빙 희생자와 잠정적인 희생자를 파악하여 희생자 관리 개선에 도움이 될 것이다.