Abstract
Vehicle license plate is the only way to check the registrated information of a vehicle. Many works have been devoted to the vision system of recognizing the license plate, which has been widely used to control an illegal parking. However, it is difficult to correctly segment characters on the license plate since an illumination is affected by a weather change and a neighboring obstacles. This paper proposes a robust method of segmenting the character of the license plate on irregular illumination condition. The proposed method enhance the contrast of license plate images using the Chi-Square probability density function. For segmenting characters on the license plate, binary images with the high quality are gained by applying the adaptive threshold. Preprocessing and labeling algorithm are used to eliminate noises existing during the whole segmentation process. Finally, profiling method is applied to segment characters on license plate from binary images.
자동차의 번호판은 차량의 등록 정보를 확인할 수 있는 유일한 방법이다. 불법 주정차 단속 및 주차 관리 시스템에 차량의 등록 정보를 확인하기 위해 카메라를 이용한 무인 인식시스템의 개발이 활발히 연구되고 있다. 하지만, 일반 도로상에서 날씨나 주변 장애물들은 자동차 번호판 상에 조명 변화를 일으켜 번호판 문자의 추출을 어렵게 한다. 본 논문은 번호판 영상을 개선하여 조명변화에 강인한 문자 추출 알고리즘을 제안한다. 제안하는 기법은 번호판 영상의 명암 대비도를 높이기 위해 Chi-Square 확률 밀도 함수를 이용한다. 또한, 정확한 문자영역을 추출하기 위해, 적응적인 문턱값을 적용함으로써 고품질의 이진화 영상을 얻는다. 번호판의 문자들을 추출하는 일련의 과정에서 방해가 되는 잡음들을 전처리와 레이블링을 통해 제거한다. 마지막으로 번호판의 문자들은 번호판의 기하학적 특징을 이용한 이진화 영상의 프로파일링으로부터 추출된다.