Self diffusion of cation in yttria stabilized zirconia single crystal

  • Cheong, Deock-Soo (Department of Materials Science and Engineering, Dankook University)
  • Published : 2009.10.31

Abstract

Dislocation dipoles were formed in the early stage of deformation of Y-CSZ single crystal at high temperatures. And the dipoles were pinched off to break into dipoles loops by dislocation climb. Dislocation loop annealing was peformed in Y-CSZ single crystal to evaluate the diffusivity of cation which was the rate-controlling ion.

Keywords

References

  1. E. Fries, F. Guiberteau, A.D. Rodriguez, D.S. Cheong and A.H. Heuer, "High temperature plastic deformation of Y$_2$O$_3$ stabilized ZrO$_2$ single crystal: I. The orgin of the yield drop and associated glide polygonization", Phil. Mag. A 60 (1989) 107 https://doi.org/10.1080/01418618908221181
  2. A.D. Rodriguez, D.S. Cheong and A.H. Heuer, "High temperature plastic deformation of Y$_2$O$_3$ stabilized ZrO$_2$ single crystal: IV. The secondary slip systems", Phil. Mag. A 64 (1991) 923 https://doi.org/10.1080/01418619108213956
  3. D.-S. Cheong, A. Dominguez-Rodriguez and A.H. Heuer, "High temperature plastic deformation of Y$_2$O$_3$ stabilized ZrO$_2$ single crystal: II. Electron microscopy studies of dislocation structures", Phil. Mag. A 60 (1989) 123 https://doi.org/10.1080/01418618908221182
  4. W.G. Johnston, Journal of Applied Physics 33 (1962) 2050 https://doi.org/10.1063/1.1728892
  5. P.B. Hirsch and T.E. Mitchell, "Work hardening of metals", J.P. Hirth and J. Weertman, Ed. (Science Publishers, Inc., Gordon Beach, N.Y. 1968)
  6. P.B. Hirsch, A. Howie, R.B. Nicholson, D.W. Pashley and M.J. Whelan, "Electron microscopy of thin crystal" (Robert E. Krieger Pub. Co., Huntington, N. Y., 1977)
  7. D.S. Cheong, A.D. Rodriguez and A.H. Heuer, "High temperature plastic deformation of Y$_2$O$_3$ stabilized ZrO$_2$ single crystal: III. Variation in work hardening between 1200 and 1500$^{\circ}C$', Phil. Mag. A 63 (1991) 377 https://doi.org/10.1080/01418619108213886
  8. A.G. Evans and P.L. Pratt, "Dislocations in the fluorite structure", Phil. Mag. 20 (1969) 1213 https://doi.org/10.1080/14786436908228207
  9. W.A. Brantly and Ch. L. Bauer, Phys. Stat. Sol. 40 (1970) 707 https://doi.org/10.1002/pssb.19700400231
  10. R.L. Segall, P.G. Partridge and P.B. Hirsch, "The dislocation distribution in face-centred cubic metals after fatigue", Phil. Mag. 6 (1961) 1493 https://doi.org/10.1080/14786436108243392
  11. J.T. Fourie and R.J. Murphy, "Elongated dislocation loops and the stress-strain properties of copper single crystals", Phil. Mag. 7 (1962) 1617 https://doi.org/10.1080/14786436208213699
  12. J.J. Gilman and W.G. Johnston, Solid State Phys. 13 (1963)
  13. J. Friedel, "Dislocations" (Addison-Wesley Publishing Company, London, 1967)
  14. D.N. Seidman and R.W. Balluffi, "On the annealing of dislocation loops by climb", Phil. Mag. 13 (1966) 649 https://doi.org/10.1080/14786436608212661
  15. B.A. Wilcox and A.H. Clauer, J. Am. Cerm. Soc. 59 (1976) 89 https://doi.org/10.1111/j.1151-2916.1976.tb09438.x
  16. P.S Dodson, P.J. Goodhew and R.E. Smallman, "Dislocations and plastic flow in crystals" (Oxford University Press, Oxford. 1953)
  17. J.P. Hirth and Lothe, "Theory of dislocation" (McGrew-Hill Pub, Corp., New York, 1968)
  18. Y. Oishi, K. Bando and Y. Sakka, "Advanced in ceramics", M.F. Yan and A.H. Heuer, Ed., Vol. 7 (The American Ceramic Society, 1981) 208