Effect of In Vitro Degradation on the Weight Loss and Tensile Strength of PLA/PEG Melt Blend Fiber

In Vitro 분해가 PLA/PEG 용융블렌드 섬유의 무게감량률 및 인장강도에 미치는 영향

  • Yoon, Cheol-Soo (Department of Fiber System Engineering, Dankook University) ;
  • Ji, Dong-Sun (Department of Fiber System Engineering, Dankook University)
  • 윤철수 (단국대학교 파이버시스템공학과) ;
  • 지동선 (단국대학교 파이버시스템공학과)
  • Published : 2009.11.25

Abstract

PLA/PEG blend fibers composed of poly (lactic acid) (PLA) and poly (ethylene glycol) (PEG) were prepared via melt blending and spinning for bioabsorbable filament sutures. The blend fibers hydrolyzed with the immersion in a phosphate buffer solution at pH 7.4 and $37\;^{\circ}C$ for 1~8 weeks. The effects of blending time, blend composition, and hydrolysis time on the weight loss and tensile strength of the hydrolyzed blend fibers were investigated. After hydrolysis, the weight loss of the blend fibers increased with increasing PEG content, blending time, and hydrolysis time. The tensile strength and tensile modulus of the blend fibers decreased with increasing PEG content, blending time, and hydrolysis time. Therefore, it can be concluded that the weight loss of the PLA/PEG blend fibers was less than 0.9% even at hydrolysis time of 2 weeks and their strength retentions were over 90%.

PLA와 PEG를 사용하여 용융블렌드 방법으로 PLA/PEG 블렌드 섬유를 제조한 후 in vitro 환경조건인 pH7.4, 온도 $37\;^{\circ}C$의 완충용액에서 1~8주 동안 가수분해한 다음 무게감량률 및 인장강도 등에 미치는 영향을 검토하였다. 가수분해 시간이 1주에서 8주까지 증가함에 따라 블렌드 시간은 10~30분으로, PEG 함량은 5~30 wt%로 증가할수록 PLA/PEG 블렌드 섬유의 무게감량률은 증가하는 경향이, 인장강도 및 인장탄성률은 감소하는 경향이 현저하게 나타남을 확인하였다. 결론적으로 가수분해 시간 2주까지는 PLA/PEG 블렌드 섬유의 무게 감량률은 약 0.9% 이내이고 강도유지율은 약 90% 이상을 나타냄으로써 임계상처치유기간 중 양호한 강도가 유지될 수 있음을 확인하였다.

Keywords

References

  1. Y. K. Hong, J. Korean Fiber Soc., 28, 3 (1991)
  2. H. Y. Kim and K. W. Kim, J. Korean Fiber Soc., 33, 828 (1996)
  3. H. J. Cho, D. J. Chung, and J. H. An, Biomaterials, 25, 3733 (2004) https://doi.org/10.1016/j.biomaterials.2003.09.106
  4. H. Tsuji and Y. Ikada, Polym. Degrad. Stabil., 67, 179 (2000) https://doi.org/10.1016/S0141-3910(99)00111-1
  5. S. Aslan, L. Calandrelli, P. Laurienzo, M. Malinconoco, and C. Migliaresi, J. Mater. Sci., 35, 1615 (2000) https://doi.org/10.1023/A:1004787326273
  6. D. B. Lee, J. Korean Fiber Soc., 39, 583 (2002)
  7. M. J. Lee, M. C. Lee, and P. K. Shin, Polymer(Korea), 22, 93 (1998)
  8. C. W. Lee, S. W. Oh, D. C. Kim, and R. Y. Lee, J. Korean Fiber Soc., 35, 1 (1998)
  9. C. G. Cho, S. W. Woo, K. L. Choi, and S. S. Hwang, Polymer(Korea), 21, 821 (1997)
  10. Y. Dong and S. S. Feng, Biomaterials, 25, 2843 (2004) https://doi.org/10.1016/j.biomaterials.2003.09.055
  11. Y. Zhang, Z. Feng, Q. Feng, and F. Cui, J. Eur. Polym., 40, 1297 (2004) https://doi.org/10.1016/j.eurpolymj.2004.02.025
  12. S. H. Hsu, C. M. Tang, and C. C. Lin, Biomaterials, 25, 5593 (2004) https://doi.org/10.1016/j.biomaterials.2004.01.061
  13. S. J. Park and S. H. Kim, J. Colloid Interface Sci., 271, 336 (2004) https://doi.org/10.1016/j.jcis.2003.08.067
  14. T. Ivanova, A. Malzert, F. Boury, J. E. Proust, R. Verger, and I. Panaiotov, J. Colloid Surfaces B, 32, 307 (2003) https://doi.org/10.1016/j.colsurfb.2003.08.005
  15. Y. Hu, Y. S. Hu, V. Topolkaraev, A. Hiltner, and E. Baer, Polymer, 44, 5681 (2003) https://doi.org/10.1016/S0032-3861(03)00609-8
  16. W. C. Lai, W. B. Liau, and T. T. Lin, Polymer, 45, 3073 (2004) https://doi.org/10.1016/j.polymer.2004.03.003
  17. K. Nakane, Y. Hata, K. Morita, T. Ogihara, and N. Ogata, J. Appl. Polym. Sci., 94, 965 (2004) https://doi.org/10.1002/app.20959
  18. C. S. Yoon and D. S. Ji, Text. Sci. Eng., 43, 235 (2006)
  19. E. A. R. Duek, C. A. C. Zavaglia, and W. D. Belangero, Polymer, 40, 6465 (1999) https://doi.org/10.1016/S0032-3861(98)00846-5
  20. J. S. Oh, H. Y. Kim, S. C. Lee, D. R. Lee, and K. E. Choi, J. Korean Fiber Soc., 38, 351 (2001)
  21. S. U. Lee, H. Y. Kim, D. R. Lee, and M. S. Khil, J. Korean Fiber Soc., 39, 167 (2002)