DOI QR코드

DOI QR Code

반응표면분석에 의한 유자씨 에탄올 추출물의 항산화활성

Antioxidant Activity of Ethanol Extraction on Citron Seed by Response Surface Methodology

  • Woo, Koan-Sik (National Institute of Crop Science, Rural Development Administration) ;
  • Jeong, Ji-Young (Dept. of Food Science and Technology, Chungbuk National University) ;
  • Hwang, In-Guk (Dept. of Food Science and Technology, Chungbuk National University) ;
  • Lee, Yoon-Jeong (Dept. of Food Science and Technology, Chungbuk National University) ;
  • Lee, Youn-Ri (Dept. of Food Science and Technology, Chungbuk National University) ;
  • Park, Hee-Jeong (Rural Development Administration) ;
  • Park, Eui-Seok (Metome Food Co. Ltd.) ;
  • Jeong, Heon-Sang (Dept. of Food Science and Technology, Chungbuk National University)
  • 발행 : 2009.03.31

초록

유자씨 추출물의 항산화성분 및 항산화활성에 대한 최적 추출조건을 선정하기 위하여 추출온도($30{\sim}70^{\circ}C;\;X_1$), 추출시간($1{\sim}5$시간; $X_2$) 및 교반속도($200{\sim}600rpm;\;X_3$)를 독립 변수로 추출된 추출물의 추출수율, 총 polyphenol 함량, DPPH radical 소거활성 및 아질산염소거활성을 측정하였다. 추출수율의 최적조건은 추출온도, 추출시간 및 교반속도 각각 $50.23^{\circ}C$, 3.03시간, 400.06 rpm으로 최대 20.23%로 예측 되었으며, 총 폴리페놀 함량의 최적조건은 $49.88^{\circ}C$, 2.72시간 및 400.39 rpm으로 최대 4.37 mg/g으로 예측되었다. DPPH radical 소거활성은 각각 $50.28^{\circ}C$, 3.42시간 및 399.96 rpm으로 최대 49.69%로 예측되었으며, 아질산염소거활성은 추출온도, 추출시간 및 교반속도 각각 $49.19^{\circ}C$, 0.68시간 및 602.95 rpm으로 최대 47.79%로 예측되었다. 이상의 결과를 바탕으로 유자씨 추출물의 항산화활성을 위한 최적 조건은 추출온도, 추출시간 및 교반속도가 각각 $50^{\circ}C$, 3시간, 400 rpm로 결정하였으며, 이 조건에서 추출물을 제조하여 추출 수율, 총 폴리페놀 함량, DPPH radical 소거활성 및 아질산 염소거활성을 측정한 결과 각각 20.31%, 4.22 mg/g, 49.54% 및 44.30%로 나타났다.

Extraction characteristics of citron (Citrus junos Sieb. ex Tanaka) seeds and functional properties of corresponding extract were monitored by response surface methodology (RSM). Maximum extraction yield of 20.23% was obtained at extraction temperature of $50.23^{\circ}C$, extraction time of 3.03 hr, and shaking velocity of 400.06 rpm. At extraction temperature, extraction time, and shaking velocity of $49.88^{\circ}C$, 2.72 hr, and 400.39 rpm, respectively, maximum polyphenol content was 4.37 mg/g. At extraction temperature, extraction time, and shaking velocity of $50.28^{\circ}C$, 3.42 hr, and 399.96 rpm, respectively, maximum electron donating ability (EDA) was 49.69%. Maximum nitrite scavenging activity (NSA) was 47.79% at extraction temperature, extraction time, and shaking velocity of $49.19^{\circ}C$, 0.68 hr, and 602.95 rpm, respectively. Based on superimposition of 3-dimensional RSM with respect to extraction yield, polyphenol, EDA, and NSA, optimum ranges of extraction conditions were extraction temperature of $50^{\circ}C$, extraction time of about 3 hr, and shaking velocity of 400 rpm.

키워드

참고문헌

  1. Shinoda N, Shiga M, Nishimura K. 1970. Constituents of yuzu (Citrus junos) oil. Agric Biol Chem 34: 234-242 https://doi.org/10.1271/bbb1961.34.234
  2. Jeong JW, Lee YC, Lee KM, Kim IH, Lee MS. 1998. Manufacture condition of oleoresin using citron peel. Korean J Food Sci Technol 30: 139-145
  3. Song HS, Sawamura M, Ito T, Ukeda H. 1999. Chemical compositions of the volatile part of yuzu (Citrus junos Tanaka) peel cold-pressed oils from Japan and Korea. Flavour Frag J 14: 383-389 https://doi.org/10.1002/(SICI)1099-1026(199911/12)14:6<383::AID-FFJ848>3.0.CO;2-9
  4. Choi I, Choi S, Nam B, Kim Y, Choi H. 2008. Contents of polyphenols and limonoids in citron (Citrus junos Sieb. ex Tanaka) seed extracts and their antioxidant properties. Food Sci Biotechnol 17: 373-378
  5. Bocco A, Cuvelier A, Richard H, Berset C. 1998. Antioxidant activity and phenolic composition of citrus peel and seed extracts. J Agric Food Chem 46: 2123-2129 https://doi.org/10.1021/jf9709562
  6. Njoroge SM, Ukeda H, Sawamura M. 1996. Changes in the volatile composition of yuzu (Citrus junos Tanaka) coldpressed oil during storage. J Agric Food Chem 44: 550-556 https://doi.org/10.1021/jf950284k
  7. Song HS, Sawamura M, Ito T, Kawashimo K, Ukeda H. 2000. Quantitative determination and characteristic flavour of Citrus junos (yuzu) peel oil. Flavour Frag J 15: 245-250 https://doi.org/10.1002/1099-1026(200007/08)15:4<245::AID-FFJ904>3.0.CO;2-V
  8. Hashinaga F, Herman Z, Hashegawa S. 1990. Limonoids in seeds of yuza (Citrus junos Sieb. ex Tanaka). Nippon Shokuhin Kogyo Gakkaishi 37: 380-382 https://doi.org/10.3136/nskkk1962.37.5_380
  9. Jeong JY. 2008. Optimization of extraction conditions for limonin and nomilin in citron seed. MS Thesis. Chungbuk National University, Cheongju, Korea
  10. Miyake Y, Yammamoto K, Tsujihara N, Osawa T. 1998. Protective effects of lemon flavonoids on oxidative stress in diabetic rats. Lipids 33: 689-695 https://doi.org/10.1007/s11745-998-0258-y
  11. Berkarda B, Koyuncu H, Soybir G, Baycut F. 1998. Inhibitory effect of hesperidin on tumour initiation and promotion in mouse skin. Res Exp Med 198: 93-99 https://doi.org/10.1007/s004330050093
  12. Calomme M, Pieters L, Vlietinck A, Vanden BD. 1996. Inhibition of bacterial mutagenesis by citrus flavonoids. Planta Med 62: 222-226 https://doi.org/10.1055/s-2006-957864
  13. Galati EM, Trovato A, Kirjavainen S, Forestieri AM, Eossitto A, Monforte MT. 1996. Biological effects of hesperidin, A citrus flavonoid (note III): Antihypertensive and diuretic activity in rat. Farmaco 51: 219-221
  14. Basile A, Sorbo S, Giordano S, Ricciardi L, Ferrara S, Montesano D, Castaldo Cobianchi R, Vuotto ML, Ferrara L. 2000. Antibacterial and allelopathic activity of extract from Castanea sativa leaves. Fitoterapia 71: S110-S116 https://doi.org/10.1016/S0367-326X(00)00185-4
  15. Jeong JY, Woo KS, Hwang IG, Lee YR, Jeong HS. 2008. Optimization of extraction conditions for limonin and nomilin in citron seed. Korean J Food Sci Technol 40: 540-544
  16. Dewanto V, Xianzhong W, Liu RH. 2002. Processed sweet corn has higher antioxidant activity. J Agric Food Chem 50: 4959-4964 https://doi.org/10.1021/jf0255937
  17. Choi Y, Lee SM, Chun J, Lee HB, Lee J. 2006. Influence of heat treatment on the antioxidant activities and polyphenolic compounds of Shiitake (Lentinus edodes) mushroom. Food Chem 99: 381-387 https://doi.org/10.1016/j.foodchem.2005.08.004
  18. Kato H, Lee IE, Chuyen NV, Kim SB, Hayase F. 1987. Inhibition of nitrosomine formation by nondialyzable melanoidins. Agric Biol Chem 51: 1333-1338 https://doi.org/10.1271/bbb1961.51.1333
  19. Kang KC, Park JH, Back SB, Jhin HS, Rhee KS. 1992. Optimization of beverage preperation from Schizandra chinensis Baillon by response surface methology. Korean J Food Sci Thechnol 24: 74-81
  20. Youn KS, Jeong YJ, Lee GD, Shin SR, Ku JG. 2002. Optimization for hot water extraction process of Cordyceps militaris using response surface methology. Korean J Food Preserv 9: 184-188
  21. Park NY, Kwon JH, Kim HK. 1998. Optimization of extraction conditions for ethanol extracts from Chrysanthemum morifolium by response surface methodology. Korean J Food Sci Technol 30: 1189-1196
  22. Kim HK, Kim MO, Choi MG, Kim KH. 2003. Optimization of microwave extraction conditions for Flammulina velutipes by response surface methodology. Korean J Food Sci Technol 35: 222-228
  23. Kim NM, Yang JW, Kim WJ. 1993. Effect of ethanol concentration on index components and physicochemical characteristics of cinnamon extracts. Korean J Food Sci Technol 15: 282-287
  24. Choi MA, Park NY, Woo SM, Jeong YJ. 2003. Optimization of extractions from Hericium erinaceus by response surface methology. Korean J Food Sci Technol 35: 777-782
  25. Kim SM, Cho YS, Sung SK. 2001. The antioxidant ability and nitrite scavenging ability of plant extracts. Korean J Food Sci Technol 33: 626-632
  26. Yoo MY, Kim KH, Lee KJ, Kim SK, Yang JY. 2004. Optimization of extraction conditions of antioxidants from sporophyll of Undaria pinnatifida by response surface methodology. Korean J Microbiol Biotechnol 32: 317-321
  27. Fan TY, Tannenbaum SR. 1973. Factors influencing the rate of formation of nitrosomorpholine from morpholine and nitrite; acceleration by thiocyanate and other anions. J Agric Food Chem 21: 237-240 https://doi.org/10.1021/jf60186a006
  28. Kurechi T, Kikugawa K, Fukuda S. 1980. Nitrite-reacting substances in Japanese radish juice and their inhibition of nitrosamine formation. J Agric Food Chem 28: 1265-1269 https://doi.org/10.1021/jf60232a071
  29. Kim DS, Ahn BW, Yeun DM, Lee DH, Kim SB, Park YH. 1987. Degradation of carcinogenic nitrosamine formation factor by natural food components 1. Nitrite scavenging effects of vegetable extracts. Bull Korean Fish Soc 20: 463-468

피인용 문헌

  1. Optimization of Extraction Conditions for Mixture of Camellia sinensis L. and Artemisia argyi by Response Surface Methodology vol.31, pp.4, 2016, https://doi.org/10.13103/JFHS.2016.31.4.278
  2. Physiological Activity and Antiproliferation Effects of Citron Seed Extracts on Cancer Cells vol.38, pp.12, 2009, https://doi.org/10.3746/jkfn.2009.38.12.1672
  3. Optimum conditions for the enzymatic hydrolysis of citron waste juice using response surface methodology (RSM) vol.19, pp.5, 2010, https://doi.org/10.1007/s10068-010-0162-3
  4. Fatty acid analysis and regulatory effects of citron (Citrus junosSieb. ex TANAKA) seed oil on nitric oxide production, lipid accumulation, and leptin secretion vol.47, pp.4, 2014, https://doi.org/10.4163/jnh.2014.47.4.221
  5. 유자과즙 추출물의 생리활성 및 항균활성에 관한 연구 vol.18, pp.4, 2017, https://doi.org/10.5762/kais.2017.18.4.67
  6. Effect of ethanol leaching conditions on the properties of liqueur prepared from Citrus junos fruit peels vol.26, pp.2, 2019, https://doi.org/10.11002/kjfp.2019.26.2.194
  7. 유자씨 오일의 항산화, 항염, 항알러지 효과 및 인체 피부보호 효과에 대한 연구 vol.46, pp.3, 2009, https://doi.org/10.15230/scsk.2020.46.3.283