DOI QR코드

DOI QR Code

The Hsp90 chaperone machinery: from structure to drug development

  • Hahn, Ji-Sook (School of Chemical and Biological Engineering, Seoul National University)
  • Published : 2009.10.31

Abstract

Hsp90, an evolutionarily conserved molecular chaperone, is involved in the folding, stabilization, activation, and assembly of a wide range of 'client' proteins, thus playing a central role in many biological processes. Especially, several oncoproteins act as Hsp90 client proteins and tumor cells require higher Hsp90 activity than normal cells to maintain their malignancy. For this reason, Hsp90 has emerged as a promising target for anti-cancer drug development. It is still largely unknown how Hsp90 can recognize structurally unrelated client proteins. However, recent progress in structural studies on Hsp90 and its interaction with various co-chaperones has broadened our knowledge of how the Hsp90 ATPase activity, which is essential for its chaperone function, is regulated and coupled with the conformational changes of Hsp90 dimer. This review focuses on the roles of various Hsp90 co-chaperones in the regulation of the Hsp90 ATPase cycle, as well as in the selection of client proteins. In addition, the current development of Hsp90 inhibitors based on the structural information will be discussed.

Keywords

References

  1. Csermely, P., Schnaider, T., Soti, C., Prohaszka, Z. and Nardai, G. (1998) The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacol. Ther. 79, 129-168 https://doi.org/10.1016/S0163-7258(98)00013-8
  2. Pearl, L. H., Prodromou, C. and Workman, P. (2008) The Hsp90 molecular chaperone: an open and shut case for treatment. Biochem. J. 410, 439-453 https://doi.org/10.1042/BJ20071640
  3. Pratt, W. B., Morishima, Y. and Osawa, Y. (2008) The Hsp90 chaperone machinery regulates signaling by modulating ligand binding clefts. J. Biol. Chem. 283, 22885- 22889 https://doi.org/10.1074/jbc.R800023200
  4. McClellan, A. J., Xia, Y., Deutschbauer, A. M., Davis, R. W., Gerstein, M. and Frydman, J. (2007) Diverse cellular functions of the Hsp90 molecular chaperone uncovered using systems approaches. Cell 131, 121-135 https://doi.org/10.1016/j.cell.2007.07.036
  5. Zhao, R., Davey, M., Hsu, Y. C., Kaplanek, P., Tong, A., Parsons, A. B., Krogan, N., Cagney, G., Mai, D., Greenblatt, J., Boone, C., Emili, A. and Houry, W. A. (2005) Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the hsp90 chaperone. Cell 120, 715-727 https://doi.org/10.1016/j.cell.2004.12.024
  6. Maloney, A., Clarke, P. A., Naaby-Hansen, S., Stein, R., Koopman, J. O., Akpan, A., Yang, A., Zvelebil, M., Cramer, R., Stimson, L., Aherne, W., Banerji, U., Judson, I., Sharp, S., Powers, M., deBilly, E., Salmons, J., Walton, M., Burlingame, A., Waterfield, M. and Workman, P. (2007) Gene and protein expression profiling of human ovarian cancer cells treated with the heat shock protein 90 inhibitor 17-allylamino-17- demethoxygeldanamycin. Cancer Res. 67, 3239-3253 https://doi.org/10.1158/0008-5472.CAN-06-2968
  7. Cowen, L. E. and Lindquist, S. (2005) Hsp90 potentiates the rapid evolution of new traits: drug resistance in diverse fungi. Science 309, 2185-2189 https://doi.org/10.1126/science.1118370
  8. Rutherford, S. L. and Lindquist, S. (1998) Hsp90 as a capacitor for morphological evolution. Nature 396, 336-342 https://doi.org/10.1038/24550
  9. Whitesell, L. and Lindquist, S. L. (2005) HSP90 and the chaperoning of cancer. Nat. Rev. Cancer 5, 761-772 https://doi.org/10.1038/nrc1716
  10. Sreedhar, A. S., Kalmar, E., Csermely, P. and Shen, Y. F. (2004) Hsp90 isoforms: functions, expression and clinical importance. FEBS Lett. 562, 11-15 https://doi.org/10.1016/S0014-5793(04)00229-7
  11. Ni, M. and Lee, A. S. (2007) ER chaperones in mammalian development and human diseases. FEBS Lett. 581, 3641-3651 https://doi.org/10.1016/j.febslet.2007.04.045
  12. Felts, S. J., Owen, B. A., Nguyen, P., Trepel, J., Donner, D. B. and Toft, D. O. (2000) The hsp90-related protein TRAP1 is a mitochondrial protein with distinct functional properties. J. Biol. Chem. 275, 3305-3312 https://doi.org/10.1074/jbc.275.5.3305
  13. Mayer, M. P., Prodromou, C. and Frydman, J. (2009) The Hsp90 mosaic: a picture emerges. Nat. Struct. Mol. Biol. 16, 2-6 https://doi.org/10.1038/nsmb0109-2
  14. Wandinger, S. K., Richter, K. and Buchner, J. (2008) The Hsp90 chaperone machinery. J. Biol. Chem. 283, 18473- 18477 https://doi.org/10.1074/jbc.R800007200
  15. Pearl, L. H. and Prodromou, C. (2006) Structure and mechanism of the Hsp90 molecular chaperone machinery. Annu. Rev. Biochem. 75, 271-294 https://doi.org/10.1146/annurev.biochem.75.103004.142738
  16. Ali, M. M., Roe, S. M., Vaughan, C. K., Meyer, P., Panaretou, B., Piper, P. W., Prodromou, C. and Pearl, L. H. (2006) Crystal structure of an Hsp90-nucleotide-p23/Sba1 closed chaperone complex. Nature 440, 1013-1017 https://doi.org/10.1038/nature04716
  17. Pratt, W. B., Galigniana, M. D., Harrell, J. M. and DeFranco, D. B. (2004) Role of hsp90 and the hsp90-binding immunophilins in signalling protein movement. Cell Signal 16, 857-872 https://doi.org/10.1016/j.cellsig.2004.02.004
  18. D'Andrea, L. D. and Regan, L. (2003) TPR proteins: the versatile helix. Trends Biochem. Sci. 28, 655-662 https://doi.org/10.1016/j.tibs.2003.10.007
  19. Chadli, A., Bouhouche, I., Sullivan, W., Stensgard, B., McMahon, N., Catelli, M. G. and Toft, D. O. (2000) Dimerization and N-terminal domain proximity underlie the function of the molecular chaperone heat shock protein 90. Proc. Natl. Acad. Sci. U.S.A. 97, 12524-12529 https://doi.org/10.1073/pnas.220430297
  20. Prodromou, C., Panaretou, B., Chohan, S., Siligardi, G., O'Brien, R., Ladbury, J. E., Roe, S. M., Piper, P. W. and Pearl, L. H. (2000) The ATPase cycle of Hsp90 drives a molecular 'clamp' via transient dimerization of the N-terminal domains. EMBO J. 19, 4383-4392 https://doi.org/10.1093/emboj/19.16.4383
  21. Hessling, M., Richter, K. and Buchner, J. (2009) Dissection of the ATP-induced conformational cycle of the molecular chaperone Hsp90. Nat. Struct. Mol. Biol. 16, 287-293 https://doi.org/10.1038/nsmb.1565
  22. Meyer, P., Prodromou, C., Hu, B., Vaughan, C., Roe, S. M., Panaretou, B., Piper, P. W. and Pearl, L. H. (2003) Structural and functional analysis of the middle segment of hsp90: implications for ATP hydrolysis and client protein and cochaperone interactions. Mol. Cell 11, 647-658 https://doi.org/10.1016/S1097-2765(03)00065-0
  23. Panaretou, B., Prodromou, C., Roe, S. M., O'Brien, R., Ladbury, J. E., Piper, P. W. and Pearl, L. H. (1998) ATP binding and hydrolysis are essential to the function of the Hsp90 molecular chaperone in vivo. EMBO J. 17, 4829- 4836 https://doi.org/10.1093/emboj/17.16.4829
  24. Scheibel, T., Weikl, T. and Buchner, J. (1998) Two chaperone sites in Hsp90 differing in substrate specificity and ATP dependence. Proc. Natl. Acad. Sci. U.S.A. 95, 1495-1499 https://doi.org/10.1073/pnas.95.4.1495
  25. MacLean, M. and Picard, D. (2003) Cdc37 goes beyond Hsp90 and kinases. Cell Stress Chaperones 8, 114-119 https://doi.org/10.1379/1466-1268(2003)008<0114:CGBHAK>2.0.CO;2
  26. Roe, S. M., Ali, M. M., Meyer, P., Vaughan, C. K., Panaretou, B., Piper, P. W., Prodromou, C. and Pearl, L. H. (2004) The Mechanism of Hsp90 regulation by the protein kinase-specific cochaperone p50 (cdc37). Cell 116, 87-98 https://doi.org/10.1016/S0092-8674(03)01027-4
  27. Shirasu, K. (2009) The HSP90-SGT1 chaperone complex for NLR immune sensors. Annu. Rev. Plant. Biol. 60, 139-164 https://doi.org/10.1146/annurev.arplant.59.032607.092906
  28. Kadota, Y., Amigues, B., Ducassou, L., Madaoui, H., Ochsenbein, F., Guerois, R. and Shirasu, K. (2008) Structural and functional analysis of SGT1-HSP90 core complex required for innate immunity in plants. EMBO Rep. 9, 1209- 1215 https://doi.org/10.1038/embor.2008.185
  29. Lee, Y. T., Jacob, J., Michowski, W., Nowotny, M., Kuznicki, J. and Chazin, W. J. (2004) Human Sgt1 binds HSP90 through the CHORD-Sgt1 domain and not the tetratricopeptide repeat domain. J. Biol. Chem. 279, 16511- 16517 https://doi.org/10.1074/jbc.M400215200
  30. Zhang, M., Boter, M., Li, K., Kadota, Y., Panaretou, B., Prodromou, C., Shirasu, K. and Pearl, L. H. (2008) Structural and functional coupling of Hsp90- and Sgt1-centred multi- protein complexes. EMBO J. 27, 2789-2798 https://doi.org/10.1038/emboj.2008.190
  31. Kitagawa, K., Skowyra, D., Elledge, S. J., Harper, J. W. and Hieter, P. (1999) SGT1 encodes an essential component of the yeast kinetochore assembly pathway and a novel subunit of the SCF ubiquitin ligase complex. Mol. Cell 4, 21-33 https://doi.org/10.1016/S1097-2765(00)80184-7
  32. Bansal, P. K., Abdulle, R. and Kitagawa, K. (2004) Sgt1 associates with Hsp90: an initial step of assembly of the core kinetochore complex. Mol. Cell Biol. 24, 8069-8079 https://doi.org/10.1128/MCB.24.18.8069-8079.2004
  33. Dubacq, C., Guerois, R., Courbeyrette, R., Kitagawa, K. and Mann, C. (2002) Sgt1p contributes to cyclic AMP pathway activity and physically interacts with the adenylyl cyclase Cyr1p/Cdc35p in budding yeast. Eukaryot Cell 1, 568-582 https://doi.org/10.1128/EC.1.4.568-582.2002
  34. Azevedo, C., Sadanandom, A., Kitagawa, K., Freialdenhoven, A., Shirasu, K. and Schulze-Lefert, P. (2002) The RAR1 interactor SGT1, an essential component of R gene-triggered disease resistance. Science 295, 2073-2076 https://doi.org/10.1126/science.1067554
  35. Hahn, J. S. (2005) Regulation of Nod1 by Hsp90 chaperone complex. FEBS Lett. 579, 4513-4519 https://doi.org/10.1016/j.febslet.2005.07.024
  36. da Silva Correia, J., Miranda, Y., Leonard, N. and Ulevitch, R. (2007) SGT1 is essential for Nod1 activation. Proc. Natl. Acad. Sci. U.S.A. 104, 6764-6769 https://doi.org/10.1073/pnas.0610926104
  37. Mayor, A., Martinon, F., De Smedt, T., Petrilli, V. and Tschopp, J. (2007) A crucial function of SGT1 and HSP90 in inflammasome activity links mammalian and plant innate immune responses. Nat. Immunol. 8, 497-503 https://doi.org/10.1038/ni1459
  38. Franchi, L., Warner, N., Viani, K. and Nunez, G. (2009) Function of Nod-like receptors in microbial recognition and host defense. Immunol. Rev. 227, 106-128 https://doi.org/10.1111/j.1600-065X.2008.00734.x
  39. Ye, Z. and Ting, J. P. (2008) NLR, the nucleotide-binding domain leucine-rich repeat containing gene family. Curr. Opin. Immunol. 20, 3-9 https://doi.org/10.1016/j.coi.2008.01.003
  40. DeYoung, B. J. and Innes, R. W. (2006) Plant NBS-LRR proteins in pathogen sensing and host defense. Nat. Immunol. 7, 1243-1249 https://doi.org/10.1038/ni1410
  41. Shirasu, K., Lahaye, T., Tan, M. W., Zhou, F., Azevedo, C. and Schulze-Lefert, P. (1999) A novel class of eukaryotic zinc-binding proteins is required for disease resistance signaling in barley and development in C. elegans. Cell 99, 355-366 https://doi.org/10.1016/S0092-8674(00)81522-6
  42. Hubert, D. A., He, Y., McNulty, B. C., Tornero, P. and Dangl, J. L. (2009) Specific Arabidopsis HSP90.2 alleles recapitulate RAR1 cochaperone function in plant NB-LRR disease resistance protein regulation. Proc. Natl. Acad. Sci. U.S.A. 106, 9556-9563 https://doi.org/10.1073/pnas.0904877106
  43. Boter, M., Amigues, B., Peart, J., Breuer, C., Kadota, Y., Casais, C., Moore, G., Kleanthous, C., Ochsenbein, F., Shirasu, K. and Guerois, R. (2007) Structural and functional analysis of SGT1 reveals that its interaction with HSP90 is required for the accumulation of Rx, an R protein involved in plant immunity. Plant Cell 19, 3791-3804 https://doi.org/10.1105/tpc.107.050427
  44. Brancaccio, M., Menini, N., Bongioanni, D., Ferretti, R., De Acetis, M., Silengo, L. and Tarone, G. (2003) Chp-1 and melusin, two CHORD containing proteins in vertebrates. FEBS Lett. 551, 47-52 https://doi.org/10.1016/S0014-5793(03)00892-5
  45. Brancaccio, M., Fratta, L., Notte, A., Hirsch, E., Poulet, R., Guazzone, S., De Acetis, M., Vecchione, C., Marino, G., Altruda, F., Silengo, L., Tarone, G. and Lembo, G. (2003) Melusin, a muscle-specific integrin beta1-interacting protein, is required to prevent cardiac failure in response to chronic pressure overload. Nat. Med. 9, 68-75 https://doi.org/10.1038/nm805
  46. Wu, J., Luo, S., Jiang, H. and Li, H. (2005) Mammalian CHORD-containing protein 1 is a novel heat shock protein 90-interacting protein. FEBS Lett. 579, 421-426 https://doi.org/10.1016/j.febslet.2004.12.005
  47. Sbroggio, M., Ferretti, R., Percivalle, E., Gutkowska, M., Zylicz, A., Michowski, W., Kuznicki, J., Accornero, F., Pacchioni, B., Lanfranchi, G., Hamm, J., Turco, E., Silengo, L., Tarone, G. and Brancaccio, M. (2008) The mammalian CHORD-containing protein melusin is a stress response protein interacting with Hsp90 and Sgt1. FEBS Lett. 582, 1788-1794 https://doi.org/10.1016/j.febslet.2008.04.058
  48. Panaretou, B., Siligardi, G., Meyer, P., Maloney, A., Sullivan, J. K., Singh, S., Millson, S. H., Clarke, P. A., Naaby-Hansen, S., Stein, R., Cramer, R., Mollapour, M., Workman, P., Piper, P. W., Pearl, L. H. and Prodromou, C. (2002) Activation of the ATPase activity of hsp90 by the stress-regulated cochaperone aha1. Mol. Cell 10, 1307-1318 https://doi.org/10.1016/S1097-2765(02)00785-2
  49. Meyer, P., Prodromou, C., Liao, C., Hu, B., Roe, S. M., Vaughan, C. K., Vlasic, I., Panaretou, B., Piper, P. W. and Pearl, L. H. (2004) Structural basis for recruitment of the ATPase activator Aha1 to the Hsp90 chaperone machinery. EMBO J. 23, 1402-1410 https://doi.org/10.1038/sj.emboj.7600141
  50. Johnson, B. D., Schumacher, R. J., Ross, E. D. and Toft, D. O. (1998) Hop modulates Hsp70/Hsp90 interactions in protein folding. J. Biol. Chem. 273, 3679-3686 https://doi.org/10.1074/jbc.273.6.3679
  51. Richter, K., Muschler, P., Hainzl, O., Reinstein, J. and Buchner, J. (2003) Sti1 is a non-competitive inhibitor of the Hsp90 ATPase. Binding prevents the N-terminal dimerization reaction during the atpase cycle. J. Biol. Chem. 278, 10328-10333 https://doi.org/10.1074/jbc.M213094200
  52. Ratajczak, T., Ward, B. K. and Minchin, R. F. (2003) Immunophilin chaperones Curr. Top. Med. Chem. 3, 1348-1357 https://doi.org/10.2174/1568026033451934
  53. Denny, W. B., Valentine, D. L., Reynolds, P. D., Smith, D. F. and Scammell, J. G. (2000) Squirrel monkey immunophilin FKBP51 is a potent inhibitor of glucocorticoid receptor binding. Endocrinology 141, 4107-4113 https://doi.org/10.1210/en.141.11.4107
  54. Yong, W., Yang, Z., Periyasamy, S., Chen, H., Yucel, S., Li, W., Lin, L. Y., Wolf, I. M., Cohn, M. J., Baskin, L. S., Sanchez, E. R. and Shou, W. (2007) Essential role for Co-chaperone Fkbp52 but not Fkbp51 in androgen receptor- mediated signaling and physiology. J. Biol. Chem. 282, 5026-5036 https://doi.org/10.1074/jbc.M609360200
  55. Yang, Z., Wolf, I. M., Chen, H., Periyasamy, S., Chen, Z., Yong, W., Shi, S., Zhao, W., Xu, J., Srivastava, A., Sanchez, E. R. and Shou, W. (2006) FK506-binding protein 52 is essential to uterine reproductive physiology controlled by the progesterone receptor A isoform. Mol. Endocrinol 20, 2682-2694 https://doi.org/10.1210/me.2006-0024
  56. Riggs, D. L., Cox, M. B., Tardif, H. L., Hessling, M., Buchner, J. and Smith, D. F. (2007) Noncatalytic role of the FKBP52 peptidyl-prolyl isomerase domain in the regulation of steroid hormone signaling. Mol. Cell Biol. 27, 8658-8669 https://doi.org/10.1128/MCB.00985-07
  57. Galigniana, M. D., Radanyi, C., Renoir, J. M., Housley, P. R. and Pratt, W. B. (2001) Evidence that the peptidylprolyl isomerase domain of the hsp90-binding immunophilin FKBP52 is involved in both dynein interaction and glucocorticoid receptor movement to the nucleus. J. Biol. Chem. 276, 14884-14889 https://doi.org/10.1074/jbc.M010809200
  58. Chinkers, M. (2001) Protein phosphatase 5 in signal transduction. Trends Endocrinol Metab. 12, 28-32 https://doi.org/10.1016/S1043-2760(00)00335-0
  59. Yang, J., Roe, S. M., Cliff, M. J., Williams, M. A., Ladbury, J. E., Cohen, P. T. and Barford, D. (2005) Molecular basis for TPR domain-mediated regulation of protein phosphatase 5. EMBO J. 24, 1-10 https://doi.org/10.1038/sj.emboj.7600496
  60. Wandinger, S. K., Suhre, M. H., Wegele, H. and Buchner, J. (2006) The phosphatase Ppt1 is a dedicated regulator of the molecular chaperone Hsp90. EMBO J. 25, 367-376 https://doi.org/10.1038/sj.emboj.7600930
  61. Vaughan, C. K., Mollapour, M., Smith, J. R., Truman, A., Hu, B., Good, V. M., Panaretou, B., Neckers, L., Clarke, P. A., Workman, P., Piper, P. W., Prodromou, C. and Pearl, L. H. (2008) Hsp90-dependent activation of protein kinases is regulated by chaperone-targeted dephosphorylation of Cdc37. Mol. Cell 31, 886-895 https://doi.org/10.1016/j.molcel.2008.07.021
  62. Wang, Z., Chen, W., Kono, E., Dang, T. and Garabedian, M. J. (2007) Modulation of glucocorticoid receptor phosphorylation and transcriptional activity by a C-terminal- associated protein phosphatase. Mol. Endocrinol 21, 625-634 https://doi.org/10.1210/me.2005-0338
  63. Gong, C. X., Liu, F., Wu, G., Rossie, S., Wegiel, J., Li, L., Grundke-Iqbal, I. and Iqbal, K. (2004) Dephosphorylation of microtubule-associated protein tau by protein phosphatase 5. J. Neurochem. 88, 298-310
  64. von Kriegsheim, A., Pitt, A., Grindlay, G. J., Kolch, W. and Dhillon, A. S. (2006) Regulation of the Raf-MEK-ERK pathway by protein phosphatase 5. Nat. Cell Biol. 8, 1011-1016 https://doi.org/10.1038/ncb1465
  65. McDonough, H. and Patterson, C. (2003) CHIP: a link between the chaperone and proteasome systems. Cell Stress Chaperones 8, 303-308 https://doi.org/10.1379/1466-1268(2003)008<0303:CALBTC>2.0.CO;2
  66. Liu, L., Srikakulam, R. and Winkelmann, D. A. (2008) Unc45 activates Hsp90-dependent folding of the myosin motor domain. J. Biol. Chem. 283, 13185-13193 https://doi.org/10.1074/jbc.M800757200
  67. Chan, N. C., Likic, V. A., Waller, R. F., Mulhern, T. D. and Lithgow, T. (2006) The C-terminal TPR domain of Tom70 defines a family of mitochondrial protein import receptors found only in animals and fungi. J. Mol. Biol 358, 1010-1022 https://doi.org/10.1016/j.jmb.2006.02.062
  68. Boulon, S., Marmier-Gourrier, N., Pradet-Balade, B., Wurth, L., Verheggen, C., Jady, B. E., Rothe, B., Pescia, C., Robert, M. C., Kiss, T., Bardoni, B., Krol, A., Branlant, C., Allmang, C., Bertrand, E. and Charpentier, B. (2008) The Hsp90 chaperone controls the biogenesis of L7Ae RNPs through conserved machinery. J. Cell Biol. 180, 579-595 https://doi.org/10.1083/jcb.200708110
  69. Zhao, R., Kakihara, Y., Gribun, A., Huen, J., Yang, G., Khanna, M., Costanzo, M., Brost, R. L., Boone, C., Hughes, T. R., Yip, C. M. and Houry, W. A. (2008) Molecular chaperone Hsp90 stabilizes Pih1/Nop17 to maintain R2TP complex activity that regulates snoRNA accumulation. J. Cell Biol. 180, 563-578 https://doi.org/10.1083/jcb.200709061
  70. Yeyati, P. L. and van Heyningen, V. (2008) Incapacitating the evolutionary capacitor: Hsp90 modulation of disease. Curr. Opin. Genet. Dev. 18, 264-272 https://doi.org/10.1016/j.gde.2008.07.004
  71. Luo, W., Rodina, A. and Chiosis, G. (2008) Heat shock protein 90: translation from cancer to Alzheimer's disease treatment? BMC Neurosci. 9 (Suppl 2), S7
  72. Sharp, S. and Workman, P. (2006) Inhibitors of the HSP90 molecular chaperone: current status. Adv. Cancer Res. 95, 323-348 https://doi.org/10.1016/S0065-230X(06)95009-X
  73. Neckers, L. and Ivy, S. P. (2003) Heat shock protein 90. Curr. Opin. Oncol. 15, 419-424 https://doi.org/10.1097/00001622-200311000-00003
  74. Fortugno, P., Beltrami, E., Plescia, J., Fontana, J., Pradhan, D., Marchisio, P. C., Sessa, W. C. and Altieri, D. C. (2003) Regulation of survivin function by Hsp90. Proc. Natl. Acad. Sci. U.S.A. 100, 13791-13796 https://doi.org/10.1073/pnas.2434345100
  75. Calderwood, S. K., Khaleque, M. A., Sawyer, D. B. and Ciocca, D. R. (2006) Heat shock proteins in cancer: chaperones of tumorigenesis. Trends Biochem. Sci. 31, 164-172 https://doi.org/10.1016/j.tibs.2006.01.006
  76. Chiosis, G., Vilenchik, M., Kim, J. and Solit, D. (2004) Hsp90: the vulnerable chaperone. Drug Discov. Today 9, 881-888 https://doi.org/10.1016/S1359-6446(04)03245-3
  77. Kamal, A., Thao, L., Sensintaffar, J., Zhang, L., Boehm, M. F., Fritz, L. C. and Burrows, F. J. (2003) A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 425, 407-410 https://doi.org/10.1038/nature01913
  78. Tsutsumi, S., Scroggins, B., Koga, F., Lee, M. J., Trepel, J., Felts, S., Carreras, C. and Neckers, L. (2008) A small molecule cell-impermeant Hsp90 antagonist inhibits tumor cell motility and invasion. Oncogene 27, 2478-2487 https://doi.org/10.1038/sj.onc.1210897
  79. Stebbins, C. E., Russo, A. A., Schneider, C., Rosen, N., Hartl, F. U. and Pavletich, N. P. (1997) Crystal structure of an Hsp90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent. Cell 89, 239-250 https://doi.org/10.1016/S0092-8674(00)80203-2
  80. Roe, S. M., Prodromou, C., O'Brien, R., Ladbury, J. E., Piper, P. W. and Pearl, L. H. (1999) Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin. J. Med. Chem. 42, 260-266 https://doi.org/10.1021/jm980403y
  81. Schulte, T. W. and Neckers, L. M. (1998) The benzoquinone ansamycin 17-allylamino-17-demethoxygeldanamycin binds to HSP90 and shares important biologic activities with geldanamycin. Cancer Chemother. Pharmacol. 42, 273-279 https://doi.org/10.1007/s002800050817
  82. Egorin, M. J., Lagattuta, T. F., Hamburger, D. R., Covey, J. M., White, K. D., Musser, S. M. and Eiseman, J. L. (2002) Pharmacokinetics, tissue distribution, and metabolism of 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (NSC 707545) in CD2F1 mice and Fischer 344 rats. Cancer Chemother. Pharmacol. 49, 7-19 https://doi.org/10.1007/s00280-001-0380-8
  83. Chiosis, G., Lucas, B., Shtil, A., Huezo, H. and Rosen, N. (2002) Development of a purine-scaffold novel class of Hsp90 binders that inhibit the proliferation of cancer cells and induce the degradation of Her2 tyrosine kinase. Bioorg. Med. Chem. 10, 3555-3564 https://doi.org/10.1016/S0968-0896(02)00253-5
  84. He, H., Zatorska, D., Kim, J., Aguirre, J., Llauger, L., She, Y., Wu, N., Immormino, R. M., Gewirth, D. T. and Chiosis, G. (2006) Identification of potent water soluble purine-scaffold inhibitors of the heat shock protein 90. J. Med. Chem. 49, 381-390 https://doi.org/10.1021/jm0508078
  85. McDonald, E., Jones, K., Brough, P. A., Drysdale, M. J. and Workman, P. (2006) Discovery and development of pyrazolescaffold Hsp90 inhibitors. Curr. Top. Med. Chem. 6, 1193- 1203 https://doi.org/10.2174/156802606777812086
  86. Taldone, T., Gozman, A., Maharaj, R. and Chiosis, G. (2008) Targeting Hsp90: small-molecule inhibitors and their clinical development. Curr. Opin. Pharmacol. 8, 370-374 https://doi.org/10.1016/j.coph.2008.06.015
  87. Barril, X., Brough, P., Drysdale, M., Hubbard, R. E., Massey, A., Surgenor, A. and Wright, L. (2005) Structure-based discovery of a new class of Hsp90 inhibitors. Bioorg. Med. Chem. Lett. 15, 5187-5191 https://doi.org/10.1016/j.bmcl.2005.08.092
  88. Meli, M., Pennati, M., Curto, M., Daidone, M. G., Plescia, J., Toba, S., Altieri, D. C., Zaffaroni, N. and Colombo, G. (2006) Small-molecule targeting of heat shock protein 90 chaperone function: rational identification of a new anticancer lead. J. Med. Chem. 49, 7721-7730 https://doi.org/10.1021/jm060836y
  89. Hong, T. J., Park, H., Kim, Y. J., Jeong, J. H. and Hahn, J. S. (2009) Identification of new Hsp90 inhibitors by structure- based virtual screening. Bioorg. Med. Chem. Lett. 19, 4839-4842 https://doi.org/10.1016/j.bmcl.2009.06.040
  90. Park, H., Kim, Y. J. and Hahn, J. S. (2007) A novel class of Hsp90 inhibitors isolated by structure-based virtual screening. Bioorg. Med. Chem. Lett. 17, 6345-6349 https://doi.org/10.1016/j.bmcl.2007.08.069

Cited by

  1. Combination Therapy of NSCLC Using Hsp90 Inhibitor and Doxorubicin Carrying Functional Nanoceria vol.14, pp.3, 2017, https://doi.org/10.1021/acs.molpharmaceut.6b01076
  2. Heat Shock Protein 90 ofBonamia ostreae: Characterization and Possible Correlation with Infection of the Flat Oyster,Ostrea edulis vol.60, pp.3, 2013, https://doi.org/10.1111/jeu.12031
  3. Synergistic activity of the Hsp90 inhibitor ganetespib with taxanes in non-small cell lung cancer models vol.30, pp.6, 2012, https://doi.org/10.1007/s10637-011-9790-6
  4. Targeting heat-shock-protein 90 (Hsp90) by natural products: geldanamycin, a show case in cancer therapy vol.30, pp.10, 2013, https://doi.org/10.1039/c3np70012g
  5. Inhibition of Hsp90 with Resorcylic Acid Macrolactones: Synthesis and Binding Studies vol.16, pp.34, 2010, https://doi.org/10.1002/chem.201001119
  6. Differential effect of heterocyclic d-ribofuranoside derivatives on human prostate cancer cell viability and cell cycle progression vol.68, pp.7, 2014, https://doi.org/10.1016/j.biopha.2014.08.010
  7. Targeting the Hsp90 Molecular Chaperone with Novel Macrolactams. Synthesis, Structural, Binding, and Cellular Studies vol.6, pp.12, 2011, https://doi.org/10.1021/cb200196e
  8. Gene expression, metabolic regulation and stress tolerance during diapause vol.67, pp.14, 2010, https://doi.org/10.1007/s00018-010-0311-0
  9. Heat shock protein 90 regulates phosphatidylinositol 3-kinase-related protein kinase family proteins together with the RUVBL1/2 and Tel2-containing co-factor complex vol.103, pp.1, 2012, https://doi.org/10.1111/j.1349-7006.2011.02112.x
  10. New insights into the induction of the heat shock proteins in baculovirus infected insect cells vol.421, pp.1, 2011, https://doi.org/10.1016/j.virol.2011.09.010
  11. Trypanosome Prereplication Machinery: A Potential New Target for an Old Problem vol.2011, 2011, https://doi.org/10.4061/2011/518258
  12. The role of heat shock protein 90 in modulating ischemia–reperfusion injury in the kidney vol.21, pp.10, 2012, https://doi.org/10.1517/13543784.2012.713939
  13. Dynamic Nucleotide-dependent Interactions of Cysteine- and Histidine-rich Domain (CHORD)-containing Hsp90 Cochaperones Chp-1 and Melusin with Cochaperones PP5 and Sgt1 vol.288, pp.1, 2013, https://doi.org/10.1074/jbc.M112.398636
  14. Proteasome Inhibition-Induced Downregulation of Akt/GSK-3β Pathway Contributes to Abnormality of Tau in Hippocampal Slice vol.50, pp.3, 2014, https://doi.org/10.1007/s12035-014-8702-0
  15. A Chemical–Biological Study Reveals C9-type Iridoids as Novel Heat Shock Protein 90 (Hsp90) Inhibitors vol.56, pp.4, 2013, https://doi.org/10.1021/jm301398y
  16. Immunosensors Based on Graphene Field-Effect Transistors Fabricated Using Antigen-Binding Fragment vol.51, pp.6S, 2012, https://doi.org/10.7567/JJAP.51.06FD08
  17. Homology modeling, ligand docking and in silico mutagenesis of neurospora Hsp80 (90): insight into intrinsic ATPase activity vol.44, 2013, https://doi.org/10.1016/j.jmgm.2013.02.008
  18. The novel HSP90 inhibitor NVP-AUY922 shows synergistic anti-leukemic activity with cytarabine in vivo vol.340, pp.2, 2016, https://doi.org/10.1016/j.yexcr.2015.12.017
  19. Expression of hsp90 mediates cytoprotective effects in the gastrodermis of planarians vol.16, pp.1, 2011, https://doi.org/10.1007/s12192-010-0218-6
  20. Assessment of placental and maternal stress responses in patients with pregnancy related complications via monitoring of heat shock protein mRNA levels vol.42, pp.3, 2015, https://doi.org/10.1007/s11033-014-3808-z
  21. Heat shock protein 90 inhibitor mycoepoxydiene modulates kinase signaling in cervical cancer cells and inhibits in-vivo tumor growth vol.26, pp.1, 2015, https://doi.org/10.1097/CAD.0000000000000135
  22. Constitutively active heat shock factor 1 enhances glucose-driven insulin secretion vol.60, pp.6, 2011, https://doi.org/10.1016/j.metabol.2010.07.029
  23. Hsp90: A New Player in DNA Repair? vol.5, pp.4, 2015, https://doi.org/10.3390/biom5042589
  24. Hsp90 inhibition induces destabilization of actin cytoskeleton in tumor cells: functional significance of Hsp90 interaction with F–actin vol.3, pp.9, 2010, https://doi.org/10.1016/S1995-7645(10)60172-1
  25. Integrated regulation of PIKK-mediated stress responses by AAA+ proteins RUVBL1 and RUVBL2 vol.3, pp.1, 2012, https://doi.org/10.4161/nucl.18926
  26. Identification of molecular candidates and interaction networks via integrative toxicogenomic analysis in a human cell line following low-dose exposure to the carcinogenic metals cadmium and nickel vol.30, pp.3, 2013, https://doi.org/10.3892/or.2013.2587
  27. Relative quantification of the proteomic changes associated with the mycotoxin zearalenone in the H295R steroidogenesis model vol.58, pp.6-7, 2011, https://doi.org/10.1016/j.toxicon.2011.08.015
  28. Structural characterization of tetranortriterpenes from Pseudrocedrela kotschyi and Trichilia emetica and study of their activity towards the chaperone Hsp90 vol.75, 2012, https://doi.org/10.1016/j.phytochem.2011.12.002
  29. Characterization of the Constitutive Pig Ovary Heat Shock Chaperone Machinery and Its Response to Acute Thermal Stress or to Seasonal Variations1 vol.87, pp.5, 2012, https://doi.org/10.1095/biolreprod.112.104018
  30. Distinct Roles of Molecular Chaperones HSP90α and HSP90β in the Biogenesis of KCNQ4 Channels vol.8, pp.2, 2013, https://doi.org/10.1371/journal.pone.0057282
  31. Phase I dose-escalation study of the HSP90 inhibitor AUY922 in Japanese patients with advanced solid tumors vol.74, pp.3, 2014, https://doi.org/10.1007/s00280-014-2521-x
  32. Finding Hsp90 inhibitors by drug repurposing: The power of chemical genetics vol.17, pp.11-12, 2012, https://doi.org/10.1016/j.drudis.2012.03.009
  33. Stress response for disease control in aquaculture vol.3, pp.3, 2011, https://doi.org/10.1111/j.1753-5131.2011.01049.x
  34. Potent activity of the Hsp90 inhibitor ganetespib in prostate cancer cells irrespective of androgen receptor status or variant receptor expression vol.42, pp.1, 2013, https://doi.org/10.3892/ijo.2012.1698
  35. Discovery and development of natural heat shock protein 90 inhibitors in cancer treatment vol.2, pp.3, 2012, https://doi.org/10.1016/j.apsb.2012.03.009
  36. Building Cell Selectivity into CPP-Mediated Strategies vol.3, pp.5, 2010, https://doi.org/10.3390/ph3051456
  37. Aniline-induced nitrosative stress in rat spleen: Proteomic identification of nitrated proteins vol.255, pp.1, 2011, https://doi.org/10.1016/j.taap.2011.06.005
  38. Hsp90 inhibitor SY-016 induces G2/M arrest and apoptosis in paclitaxel-resistant human ovarian cancer cells vol.13, pp.4, 2017, https://doi.org/10.3892/ol.2017.5794
  39. The HSP90 inhibitor NVP-AUY922 inhibits growth of HER2 positive and trastuzumab-resistant breast cancer cells vol.36, pp.4, 2018, https://doi.org/10.1007/s10637-017-0556-7