DOI QR코드

DOI QR Code

Effect of Different Rumen-degradable Carbohydrates on Rumen Fermentation, Nitrogen Metabolism and Lactation Performance of Holstein Dairy Cows

  • Khezri, A. (Department of Animal Science, Faculty of Agriculture, University of Tehran) ;
  • Rezayazdi, K. (Department of Animal Science, Faculty of Agriculture, University of Tehran) ;
  • Mesgaran, M. Danesh (Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad) ;
  • Moradi-Sharbabk, M. (Department of Animal Science, Faculty of Agriculture, University of Tehran)
  • Received : 2008.08.01
  • Accepted : 2008.12.05
  • Published : 2009.05.01

Abstract

Four multiparous lactating Holstein cows fitted with rumen cannulae were fed diets varying in the amount and source of rumen-degradable carbohydrates (starch vs. sucrose) to examine their effects on rumen fermentation, nitrogen metabolism and lactation performance. A $4{\times}4$ Latin square with four diets and four periods of 28 days each was employed. Corn starch and sucrose were added to diets and corn starch was replaced with sucrose at 0 (0 S), 2.5 (2.5 S), 5.0 (5.0 S) 7.5% (7.5 S) of diet dry matter in a total mixed ration (TMR) containing 60% concentrate and 40% forage (DM basis). Replacing corn starch with sucrose did not affect (p>0.05) ruminal pH which averaged 6.41, but the ruminal pH for 7.5 S decreased more rapidly at 2 h after morning feeding compared with other treatments. Sucrose reduced ($p{\leq}0.05$) ruminal $NH_3-N$ concentration (13.90 vs. 17.09 mg/dl) but did not affect peptide-N concentration. There was no dietary effect on total volatile fatty acids (110.53 mmol/L) or the acetate to propionate ratio (2.72). No differences (p>0.05) in molar proportion of most of the individual VFA were found among diets, except for the molar proportion of butyrate that was increased ($p{\leq}0.05$) with the inclusion of sucrose. Total branched chain volatile fatty acids tended to increase ($p{\geq}0.051$) for the control treatment (0 S) compared with the 7.5 S treatment. Dry matter intake, body weight changes and digestibility of DM, OM, CP, NDF and ADF were not affected by treatments. Sucrose inclusion in the total mixed ration did not affect milk yield, but increased milk fat and total solid percentage ($p{\leq}0.05$). Sucrose tended ($p{\geq}0.063$) to increase milk protein percentage (3.28 vs. 3.05) and reduced ($p{\leq}0.05$) milk urea nitrogen concentration (12.75 vs. 15.48 mg/dl), suggesting a more efficient utilization of the rapidly available nitrogen components in the diet and hence improving nitrogen metabolism in the rumen.

Keywords

References

  1. Allison, M. J. 1970. Nitrogen metabolism of ruminal microorganisms. In: Physiology of digestion and metabolism in the ruminant (Ed. A. T. Phillipson), Oriel Press, Newcastle upon Tyne, UK. p. 456
  2. AOAC. 1999. Official methods of analysis. 17th edn. Association of Official Analytical Chemists, Arlington, Virginia
  3. Ariza, P., A. Bach, M. D. Stern and M. B. Hall. 2001. Effects of carbohydrates from citrus pulp and hominy feed on microbial fermentation in continuous culture. J. Anim. Sci. 79:2713-2718
  4. Broderick, G. A., N. D. Luchini, W. J. Smith, S. Reynal, G. A. Varga and V. A. Ishler. 2000. Effect of replacing dietary starch with sucrose on milk production in lactating dairy cows. J. Dairy Sci. 83(Suppl. 1):248(Abstr.)
  5. Chen, G., J. B. Russell and C. J. Sniffen. 1987. A procedure for measuring peptides in rumen fluid and evidence that peptide uptake can be a rate-limiting step in ruminal protein degradation. J. Dairy Sci. 70:1211-1219 https://doi.org/10.3168/jds.S0022-0302(87)80133-9
  6. Crook, W. M. and W. E. Simpson. 1971. Determination of ammonium in Kjeldahl digest of crops by an automated procedure. J. Sci. Food Agric. 22:9 https://doi.org/10.1002/jsfa.2740220104
  7. Hall, M. B. and C. Herejk. 2001. Differences in yields of microbial crude protein from in vitro fermentation of carbohydrates. J. Dairy Sci. 84:2486-2493 https://doi.org/10.3168/jds.S0022-0302(01)74699-1
  8. Heldt, J. S., R. C. Cochran, C. P. Mathis, B. C. Woods, K. C. Olson, E. C. Titgemeyer, T. G. Nagaraja, E. S. Vanzant and D. E. Johnson. 1999. Effects of level and source of carbohydrate and level of degradable protein on intake and digestion of lowquality tallgrass-prairie hay by beef steers. J. Anim. Sci. 77:2846-2854
  9. Hristov, A. N. and J.-P. Jouany. 2005. Factors affecting the efficiency of nitrogen utilization in the rumen. In: Nitrogen and phosphorus nutrition of cattle and environment (Ed. A. N. Hristov and E. Pfeffer). CAB International, Wallingford, UK. pp. 117-166
  10. Huhtanen, P. and H. Khalili. 1991. Sucrose supplements in cattle given grass silage-based diet. 3. Rumen pool size and digestion kinetics. Anim. Feed Sci. Technol. 33:275-287 https://doi.org/10.1016/0377-8401(91)90066-2
  11. Jones, D. F., W. H. Hoover and T. K. Miller-Webster. 1998. Effects of concentrations of peptides on microbial metabolism in continuous culture. J. Anim. Sci. 76:611-616
  12. Khalili, H. and P. Huhtanen. 1991. Sucrose supplements in cattle given grass silage-based diet. 2. Digestion of cell wall carbohydrates. Anim. Feed Sci. Technol. 33:263-273 https://doi.org/10.1016/0377-8401(91)90066-2
  13. Lee, M. R. F., R. J. Merry, D. R. Davies, J. M. Moorby, M. O. Humphreys, M. K. Theodorou, J. C. MacRae and N. D. Scollan. 2003. Effect of increasing availability of watersoluble carbohydrates on in vitro rumen fermentation. Anim. Feed Sci. Technol. 104:59-70 https://doi.org/10.1016/S0377-8401(02)00319-X
  14. Leng, R. A. 1970. Formation and production of volatile fatty acids in the rumen. In: Physiology of digestion and metabolism in the ruminant (Ed. A T. Phillipson). Oriel Press, Newcastle upon Tyne, UK. pp. 406-421
  15. Mesgaran, M. D. and D. S. Parker. 1995. The effect of dietary protein and energy sources on ruminal accumulation of low molecular weight peptides in sheep. Anim. Sci. 60:535
  16. Miron, J., E. Yosef, D. Ben-Ghedalia, L. E. Chase, D. E. Bauman and R. Solomon. 2002. Digestibility by dairy cows of monosaccharide constituents in total mixed ration containing citrus pulp. J. Dairy Sci. 85:89-94 https://doi.org/10.3168/jds.S0022-0302(02)74056-3
  17. Mould, F. L., E. R. $\phi$rskov and S. O. Mann. 1984. Associative effects of mixed feeds. I. Effect of type and level of supplementation and the influence on the rumen fluid pH on cellulolysis in vivo and dry matter digestion on various roughages. Anim. Feed Sci. Technol. 10:15-30 https://doi.org/10.1016/0377-8401(83)90003-2
  18. National Research Council 2001. Nutrient Requirements of Dairy Cattle. 7th rev. edn. Natl. Acad. Sci., Washington, DC
  19. Nombekela, S. W. and M. R. Murphy. 1995. Sucrose supplementation and feed intake of dairy cows in early lactation. J. Dairy Sci. 78:880-885 https://doi.org/10.3168/jds.S0022-0302(95)76701-7
  20. Ordway, R. S., V. A. Ishler and G. A. Varga. 2002. Effects of sucrose supplementation on dry matter intake, milk yield, and blood metabolites of periparturient Holstein dairy cows. J. Dairy Sci. 85:879-888 https://doi.org/10.3168/jds.S0022-0302(02)74146-5
  21. Pate, F. 1983. Molasses in beef nutrition. Natl. Feed Ingredients Assoc., W. Des Moines, IA
  22. Robles, V., L. A. González, A. Ferret, X. Manteca and S. Calsamiglia. 2007. Effects of feeding frequency on intake, ruminal fermentation, and feeding behavior in heifers fed highconcentrate diets. J. Anim. Sci. 85:2538-2547 https://doi.org/10.2527/jas.2006-739
  23. Sannes, R. A., M. A. Messman and D. B. Vagnoni. 2002. Form of rumen-degradable carbohydrate and nitrogen on microbial protein synthesis and protein efficiency of dairy cows. J. Dairy Sci. 85:900-908 https://doi.org/10.3168/jds.S0022-0302(02)74148-9
  24. SAS Institute Inc. 2000. SAS/STAT User's Guide: Version 8.1th edn. SAS Institute Inc., Cary, North Carolina
  25. Satter, L. D. and L. L. Slyter. 1974. Effect of ammonia concentration on rumen microbial protein production in vitro. Br. J. Nutr. 32:199-208 https://doi.org/10.1079/BJN19740073
  26. Sniffen, C. J., J. D. O'Connor, P. J. Van Soest, D. G. Fox and J. B. Russell. 1992. A net carbohydrate and protein system for evaluating cattle diets. II. Carbohydrate and protein availability. J. Anim. Sci. 70:3562-3577
  27. Strobel, H. J. and J. B. Russell. 1986. Effect of pH and energy spilling on bacterial protein synthesis by carbohydrate-limited cultures of mixed rumen bacteria. J. Dairy Sci. 69:2941-2947 https://doi.org/10.3168/jds.S0022-0302(86)80750-0
  28. Supelco, Inc. 1975. GC Separation of VFA C2-C5. Tech. Bull. 749D. Supelco, Inc., Bellefonte, PA
  29. Tamminga, S. 1992. Nutrition management of dairy cows as a contribution to pollution control. J. Dairy Sci. 75:345-357 https://doi.org/10.3168/jds.S0022-0302(92)77770-4
  30. Vallimont, J. E., F. Bargo, T. W. Cassidy, N. D. Luchini, G. A. Broderick and G. A. Varga. 2004. Effects of replacing dietary starch with sucrose on ruminal fermentation and nitrogen metabolism in continuous culture. J. Dairy Sci. 87:4221-4229 https://doi.org/10.3168/jds.S0022-0302(04)73567-5
  31. Van Keulen, J. and B. A. Young. 1977. Evaluation of acidinsoluble ash as a natural marker in ruminant digestibility studies. J. Anim. Sci. 44:282-287
  32. Van Soest, P. J., J. B. Robertson and B. A. Lewis. 1991. Methods for dietary fiber, neutral fiber and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3588-3597
  33. Van Soest, P. J. 1994. Nutritional ecology of the ruminant. 2nd Ed. Cornell Univ. Press, Ithaca, NY
  34. Varga, G. A. 2003. Soluble carbohydrates for lactating dairy cows. In: Proceedings of tri state dairy nutrtion. Conferance., Fort Wayne, IN. p. 59
  35. Wallace, R. J. 1996. Ruminal microbial metabolism of peptides and amino acids. J. Nutr. 126:1326S-1334S https://doi.org/10.1016/S0377-8401(96)01067-X

Cited by

  1. Ruminal fermentation, nutrient digestibility and microbial protein synthesis in sheep fed diets with different levels of date pulp vol.57, pp.4, 2017, https://doi.org/10.1071/AN14586
  2. In vitro rumen fermentation of soluble and non-soluble polymeric carbohydrates in relation to ruminal acidosis pp.1869-2044, 2017, https://doi.org/10.1007/s13213-017-1307-x
  3. Development and use of quantitative competitive PCR assays for relative quantifying rumen anaerobic fungal populations in both in vitro and in vivo systems vol.113, pp.10, 2009, https://doi.org/10.1016/j.mycres.2009.07.017
  4. Effects of Synchronization of Carbohydrate and Protein Supply on Ruminal Fermentation, Nitrogen Metabolism and Microbial Protein Synthesis in Holstein Steers vol.23, pp.11, 2009, https://doi.org/10.5713/ajas.2010.10247
  5. Nutrient Synchrony: Is it a Suitable Strategy to Improve Nitrogen Utilization and Animal Performance? vol.23, pp.7, 2009, https://doi.org/10.5713/ajas.2010.r.04
  6. Postruminal digestion of starch infused into the abomasum of heifers with or without exogenous amylase administration vol.96, pp.5, 2018, https://doi.org/10.1093/jas/sky082
  7. A Tier 3 Method for Enteric Methane in Dairy Cows Applied for Fecal N Digestibility in the Ammonia Inventory vol.2018, pp.2, 2009, https://doi.org/10.3389/fsufs.2018.00066
  8. Starch and dextrose at 2 levels of rumen-degradable protein in iso-nitrogenous diets: Effects on lactation performance, ruminal measurements, methane emission, digestibility, and nitrogen balance of d vol.102, pp.2, 2009, https://doi.org/10.3168/jds.2018-15041
  9. Effects of linseed processing method (ground versus extruded) and dietary crude protein content on performance, digestibility, ruminal fermentation pattern, and rumen protozoa population in growing la vol.20, pp.1, 2009, https://doi.org/10.1080/1828051x.2021.1984324