2 MWe 순환유동층 발전 플랜트에서 유연탄과 북한 무연탄 혼소시험 특성 연구

A Study of Co-Combustion Characteristics of North Korean Anthracite and Bituminous Coal in 2 MWe CFBC Power Plant

  • 한근희 (한국에너지기술연구원 온실가스연구단) ;
  • 현주수 (한국에너지기술연구원 온실가스연구단) ;
  • 최원길 (한국에너지기술연구원 온실가스연구단) ;
  • 이종섭 (한국에너지기술연구원 온실가스연구단)
  • Han, Keun-hee (Greenhouse Gas Research Center, Korea Institute of Energy Research) ;
  • Hyun, Ju-soo (Greenhouse Gas Research Center, Korea Institute of Energy Research) ;
  • Choi, Won-kil (Greenhouse Gas Research Center, Korea Institute of Energy Research) ;
  • Lee, Jong-seop (Greenhouse Gas Research Center, Korea Institute of Energy Research)
  • 투고 : 2009.06.26
  • 심사 : 2009.07.28
  • 발행 : 2009.10.31

초록

본 연구에서는 2 MWe 규모 순환유동층 발전소에서 중국산 유연탄과 북한산 무연탄의 혼합연소특성을 실험적으로 고찰하였다. 중국유연탄과 호주유연탄을 과잉공기량과 층온도 등을 변수로 실험한 결과, 연소효율은 석탄입자의 입도와 석탄중의 휘발분의 영향을 받으며, 이 때 미연탄소분은 Fly ash 5~7%, 바닥회 0.3% 수준으로 중국 유연탄의 연소효율은 99.5% 이상을 보였다. 북한산 무연탄과 유연탄의 혼소시 혼합비 20%에서 무연탄의 평균입도가 작아 연소실에서 비산되는 입자로 인해 연소효율은 5% 이상 저하되었다, 그러나 $SO_2$와 NOx의 배출농도는 크게 변화하지 않았다. 배출되는 대기오염물질의 농도는 $NO_x$ 200~250 ppm($O_2$ 6%), $SO_2$ 100~320 ppm($O_2$ 6%)이었다. SCR 공정에서 2~13 l/min 범위의 $NH_3$ 공급으로 30~65%의 $NO_x$가 저감되었다. Limestone을 이용한 노내탈황에서 약 Ca/S 몰비 6.5를 공급했을 때 $SO_2$가 75% 제거되었고, $Mg(OH)_2$를 흡수제로 하는 FGD를 운전했을 때 pH 5.0 이상에서 100% 탈황효과를 보였다.

In this study, co-combustion characteristics of Chinese bituminous coal and North Korean anthracite were investigated using a 2 MWe scale circulating fluidized bed power plant. At first, the combustion efficiency of bituminous coal of China and Australia as a function of excess air ratio and temperature were observed. The results showed that the combustion efficiency was influenced by particle size and volatile content of coal, the combustion efficiency of Chinese bituminous coal was over 99.5%. The unburned carbon particles from fly ash and bottom ash were a content 5~7% and 0.3%, respectively. The combustion efficiency with the mixture ratio 20% of bituminous coal and anthracite decreased over 5% because of the increase of entrained particles by a small average particle size of anthracite in the combustor. However, the outlet concentration of $SO_2$ and $NO_x$ was not changed remarkably. The concentrations of the typical air pollutants such as $NO_x$ and $SO_2$ were 200~250 ppm($O_2$ 6%), 100~320 ppm($O_2$ 6%) respectively. The outlet concentration of $NO_x$ was decreased to 30~65% with $NH_3$ supplying rate of 2~13 l/min in SCR process. The $SO_x$ removal efficiency was up to 70% by in-furnace desulfurization using limestone with Ca/S molar of approximately 6.5. With wet scrubbing using $Mg(OH)_2$ as absorbent, the $SO_x$ removal efficiency reached 100% under near pH 5.0 of scrubbing liquid.

키워드

과제정보

연구 과제 주관 기관 : 산업기술연구회

참고문헌

  1. James, K., 'The Future of Coal,' Massachusetts Institute of Technology, 5-15(2007)
  2. Shun, D., Jin, K. T., Yi, C. K. and Han, K. H., 'Development of Circulating Fluidized Bed Combustion and Emission Control Technology', Research Report, KIER-A03707, KIER, 7-12(2000)
  3. Jin, K. T., Han, K. H, Shun, D. and Park, J. H., 'Development of Bench Scale Pressurized Fluidized Bed Combustion Technology,' Research Report, KIER-973402, KIER, 31-34(2000)
  4. Koskinen, 'Ultraclean Combustion of Coal in Ahlstrom Pyroflow PCFB Combustor,' Proceeding of the 13th International Conference on FBC(1995)
  5. Han, K. H., Ryu, J. I. and Jin, K. T., 'Desulfurization Characteristics of Domestic Anthracite by Limestone at Bench Scale Pressurized Fluidized bed Combustor,' Trans. of the KSME(B), 25(10), 1373-1383(2001)
  6. Sarofim, A. F., Goel, S. K. and Morihara, A., 'Fluidized Bed Combustion and Emission Control Issue,' International Clean Coal Technology Symposium on PFBC, 12-27(1994)
  7. Han, K. H., Kang, S. H., Ryu, J. I. and Jin, K. T., 'Combustion Characteristics of Domestic Anthracite Coal in a Pressurized Fluidized bed Combustor,' HWAHAK KONGHAK, 39(5), 557-562(2001)
  8. Han, K. H., Song, Y. S., Ryu, J. I., Son, J. E. and Jin, K. T., 'The Characteristics of $SO_{2}$ Emission with Korean Anthracite in a Pressurized Fluidized bed Combustor,' HWAHAK KONGHAK, 41(1), 86-92(2003)
  9. Kang, S. H., Han, K. H., Jin, K. T. and Kang, Y., 'Combustion Characteristics of Domestic Anthracite Coal in a Pressurized Fluidized bed Combustor', J. Korean Ind. Eng. Chem., 13(1), 37-41(2002)
  10. Shimizu, T., Fujita, D., Ishizu, K., Kobayashi, S. and Inagaki, M., Proc. of 12th International Conference on Fluidized Bed Combustion, 611(1993)
  11. Shun, D. W., Bae, D. H., Han, K. H., Son, J. E., Kang, Y., Wee, Y. H., Lee, J. S. and Ji, P. S., 'Circulating Fluidized Bed Combustion of Korean Anthracite', HWAHAK KONGHAK, 34(3), 321-326(1996)
  12. Leckner, B., "Fluidized Bed Combustion : Mixing and Pollutant Limitation," Prog. Energy Combustion Science, 24, 31-61(1998) https://doi.org/10.1016/S0360-1285(97)00021-X
  13. Ake, T. R., Dixit, V. B. and Mongeon, R. K., Proc. of 12th International Conference on Fluidized Bed Combustion, 81(1993)
  14. Han, K. H., Park, J. H., Ryu, J. I. and Jin, K. T., "Coal Combustion Characteristics in a Pressurized Fluidized Bed," Korean J. Chem. Eng., 16(6), 804-809(1999) https://doi.org/10.1007/BF02698356